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ABSTRACT
Optimization of smart products requires optimizing both the

artifact design and its controller. The presence of coupling be-
tween the design and control problems is an important consider-
ation in choosing the system optimization method. Several mea-
sures of coupling have been proposed based on different view-
points of the system. In this paper, two measures of coupling,
a vector based on optimality conditions and a matrix derived
from an extension of the global sensitivity equations, are shown
to be related under certain conditions and be consistent in their
coupling determination. The measures’ physical interpretation
and relative ease of use are discussed using the example of a
positioning gantry. A further relation is derived between one
measure and a modified sequential formulation that would give
sufficiently close results to the true solutions.

NOMENCLATURE
ddda Vector of artifact design variables
dddc Vector of controller design variables
fa Artifact objective function
fc Controller objective function
F System objective function
wa Weight assigned to artifact objective
wc Weight assigned to controller objective

∗Address all correspondence to this author.

ΓΓΓv Uni-directional coupling vector derived from optimality
conditions

ΓΓΓvb Bi-directional coupling vector derived from optimality
conditions

ΓΓΓm Coupling matrix based on Global Sensitivity Equations
fi Objective function for sub-system i in coupling matrix
xxxi Design variables associated with subsystem i in coupling

matrix
yyyi j Interaction variables between subsystems i and j in cou-

pling matrix
ŷyyi j Local copy of interaction variables yi j

x̂xxi Local copy of the variables xi

N Number of subsystems present in coupling matrix
xxx States of the example system
Z Displacement of the mass in the example system
CCC Vector determining example system output from system

states
AAA State matrix determining the unforced response of the exam-

ple system
BBB Vector determining the forced response of the example sys-

tem
m Generalized mass term in differential equation describing

example system
b Generalized damping term in differential equation describing

example system
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k Generalized stiffness term in differential equation describing
example system

u Control input to example system
V Voltage applied to example system
M Mass in example system
r Radius of pulley in example system
Ra Armature resistance in example system
kt Torque constant of motor in example system
ks Spring constant of spring in example system

1 INTRODUCTION
In the optimal design and control of systems, there are typi-

cally two objectives present. There is an objective function fa for
the physical system, or artifact, and another objective fc for the
controller applied to the system. The full set of variables in this
problem consists of artifact design variables ddda and controller
design variables dddc. The optimization problem for the system
is typically formulated as a combination of the individual objec-
tives. Often, this objective is a linear combination, with weights
applied to the individual objectives, as follows.

min
ddda,dddc

wa fa +wc fc (1)

subject to

ggg(ddda,dddc) ≤ 000 (2)
hhh(ddda,dddc) = 000 (3)

Coupling can be either uni-directional or bi-directional. In uni-
directional coupling, the artifact objective function and con-
straints are functions only of the artifact variables, while the con-
troller objective function and constraints depend on both artifact
and controller variables, i.e., fa = fa (ddda), ggga = ggga (ddda), hhha =
hhha (ddda), fc = fc(ddda,dddc), gggc = gggc (ddda,dddc), and hhhc = hhhc (ddda,dddc).
In bi-directional coupling, the artifact objective function and
constraints as well as the controller objective function and con-
straints depend on both sets of design variables, i.e. fa =
fa(ddda,dddc), ggga = ggga (ddda,dddc), hhha = hhha (ddda,dddc), fc = fc(ddda,dddc),
gggc = gggc (ddda,dddc), and hhhc = hhhc (ddda,dddc). There are many systems
which exhibit coupling between the artifact and controller de-
sign, including structures [1–3], robotic arms and planar mecha-
nisms [4–6], and micro-electrical mechanical systems) [7–9].

There are a number of issues involved in the solution of
coupled problems, including quantifying the strength of the cou-
pling. This paper compares two measures of coupling previously
proposed, one based on optimality conditions and another de-
rived from global sensitivity equations, and shows that they are
equivalent for certain problems. Section 2 of this paper presents

an explanation of the two coupling measures and their range of
applicability. In Section 3, conditions are set out for a certain
problem formulation, and the equivalence of the coupling mea-
sures is demonstrated for that problem formulation. Section 4
discusses the relation between the coupling vector and the slope
of the Pareto frontier. Section 5 uses an example to illustrate the
relation derived between the two measures. Section 6 relates the
coupling vector to the accuracy of a surrogate function for ease of
control, and Section 7 extends the coupling vector to the case of
bi-directional coupling. This is followed by concluding remarks
in Section 8.

2 DEFINITION OF COUPLING MEASURES
In previous work by Reyer et al. [10, 11], the concept of

coupling in “co-design”, or combined optimal design of an ar-
tifact and its controller, was introduced. These concepts were
demonstrated in the optimal design of an electric DC motor and
its controller [10,11]. The existence of coupling was determined
by the existence of interaction variables, but was not quantified
to determine its strength. Bi-directional coupling was considered
in this work.

In later work by Fathy et al. [12, 13], only uni-directional
coupling was considered, and it was assumed that the system
objective function was a weighted sum of the two individual ob-
jectives, i.e. F(ddda,dddc) = wa fa(ddda) + wc fc(ddda,dddc). The vector
used to quantify the coupling was derived from a comparison
of the Karush-Kuhn-Tucker (KKT) optimality conditions for the
coupled and uncoupled problems [12–14], and was found to be

ΓΓΓv =
wc

wa

(
∂ fc

∂ddda
+

∂ fc

∂dddc

ddddc

dddda

)
(4)

This formulation was used to study a variety of systems, includ-
ing a passive/active automotive suspension [15, 16] and an ele-
vator [17]. In addition, it has been applied to process control,
particularly a spray-drying system [18]. Determination of the
coupling vector requires knowledge of the system solution, since
it is only meaningful at an optimal point. Strength of the cou-
pling is determined by taking the norm of the vector, with an
uncoupled system characterized by ‖ΓΓΓv‖2 = 0.

In work by Alyaqout et al. [19], bi-directional coupling was
also considered. The system objective function could take any
mathematical form, rather than being limited to a linear com-
bination of the individual objectives. Any number of individual
sub-systems with their own sub-system objective functions could
be present, as illustrated in Fig. 1 [19]. Furthermore, the vari-
ables could have both their global values and local values, as-
signed to local copies of the variables, to facilitate optimization
via decomposition methods [20]. The matrix used to describe
coupling was derived through modifications of the Global Sensi-
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tivity Equations (GSEs) to account for satisfaction of optimality
conditions [21] and was found to be

ΓΓΓm =



∂F
∂ f1

∂ f1

∂yyy11
...

∂F
∂ fN

∂ fN

∂yyy1N
...

∂F
∂ f1

∂ f1

∂yyyN1
...

∂F
∂ fN

∂ fN

∂yyyNN



T 

dŷyy11

dxxx1

dŷyy11

dxxx2
· · · dŷyy11

dxxxN
...

...
dŷyy1N

dxxx1

. . . dŷyy1N

dxxxN
...

...
dŷyyN1

dxxx1

. . .
...

...
...

dŷyyNN

dxxx1
· · · · · · dŷyyNN

dxxxN



+


∑

N
j=1

∂F
∂xxx j

dx̂xx j

dxxx1
...

∑
N
j=1

∂F
∂xxx j

dx̂xx j

dxxxN


T

+


∑

N
p=1 ∑

N
j=1

(
∂F
∂ fp

∂ fp

∂xxx j

dx̂xx j

dxxx1

)
...

∑
N
p=1 ∑

N
j=1

(
∂F
∂ fp

∂ fp

∂xxx j

dx̂xx j

dxxxN

)


T

(5)

This coupling measure has been used in suspension strategies in
Multi-Disciplinary Optimization (MDO) [21, 22] and applied to
vehicle passive/active suspension [23], electric DC motor [24],
and elevator control [19]. The GSEs have been widely used in the
optimization of complex coupled problems [22, 25, 26]. While
this coupling measure does account for optimality conditions, as
does Fathy’s coupling vector, its primary origin is in the GSEs,
and it appears to be far different in form from the coupling vector.
Like ΓΓΓv, ΓΓΓm is only meaningful at an optimal solution, and there-
fore can only be calculated once the solution is known. There
are methods for the estimation of ΓΓΓm within suspension strate-
gies, but this requires an initial calculation of the matrix [27].

3 RELATIONSHIP BETWEEN COUPLING MEASURES
As noted previously, the coupling vector ΓΓΓv and coupling

matrix ΓΓΓm do not have the same range of applicability. There-
fore, in order to examine the relation between the two coupling
measures, certain assumptions are necessary. These assumptions
are:

1. The system has two objective functions, one for the artifact
and one for the controller.

2. Coupling is unidirectional.
3. The overall objective function is a weighted sum of the indi-

vidual objectives.
4. There are no local copies of variables.

Figure 1. INTERACTION OF SUB-SYSTEMS IN GENERAL SYSTEM
FORMULATION (AFTER [19])

The system in question, then, can be represented by the diagram
given in Fig. 2. From assumptions 1–4, the following substitu-
tions can be made in Eq.( 5):

N = 2
f1 = fa

f2 = fc

x̂xx1 = xxx1 = 000
x̂xx2 = xxx2 = dddc

ŷyy12 = yyy12 = ddda

ŷyy21 = yyy21 = ddda

ŷyy11 = yyy11 = 000
ŷyy22 = yyy22 = 000

These substitutions give a simplified matrix of

ΓΓΓm =

 000

wa
∂ fa

∂ddda

dddda

ddddc
+wc

∂ fc

∂ddda

dddda

ddddc
+wc

∂ fc

∂dddc

T

(6)

It is then possible to relate ΓΓΓv and ΓΓΓm:

ΓΓΓm =

 000

wa

(
d fa

ddddc
+
(

ΓΓΓv−
wc

wa

∂ fc

∂dddc

ddddc

dddda

)
dddda

ddddc
+

wc

wa

∂ fc

∂dddc

)T

(7)
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Figure 2. SUB-SYSTEM STRUCTURE FOR SIMPLIFIED SYSTEM

If it can be further assumed that the problem is also uncon-
strained, then Eq.( 7) simplifies to

ΓΓΓm =

 0

wa
d fa

ddddc
+waΓΓΓv

dddda

ddddc

T

(8)

The following observations can then be made:

1. ΓΓΓm captures information about the interactions between vari-
ables in each sub-problem that is not contained within ΓΓΓv.
This is consistent with the differing origins of the metrics.
Since ΓΓΓm was derived from the GSEs, it can be expected to
contain information about the sensitivity of one variable to
another within the same sub-system.

2. In a problem with active constraints, it is possible for ΓΓΓm to
be non-zero when ΓΓΓv = 000. This would indicate that relations
between the design variables in a sub-system are highly sig-
nificant, and the solution will be sensitive to small changes
in the variables.

3. In both a constrained and an unconstrained problem, it is
possible for ΓΓΓm and ΓΓΓv to disagree on when a system is more
strongly coupled. This will happen in the case of high sen-
sitivity in the relations between the variables.

4. For the case where constraints are active, but there is only
one artifact design variable and one controller design vari-
able, Eq.( 7) simplifies to Eq.( 8), just as it does for the
unconstrained case. This reflects the fact that there are no
possible interactions between variables within a sub-system.
The same situation will occur when all active constraints
consist of simple bounds.

5. If an unconstrained system is uncoupled, then fa = fa(ddda)

and fc = fc(dddc). In this case,
d fa

ddddc
= 0 since, by definition of

an uncoupled system, the artifact objective function fa does
not depend on the controller variables dddc. Also, ΓΓΓv = 000,
since the equations representing the KKT conditions will be
identical for both sequential and simultaneous solutions of
the system. This results in ΓΓΓm = 000, and therefore the two
criteria will be consistent in having zero value for uncoupled
problems.

4 RELATION BETWEEN COUPLING VECTOR AND
PARETO FRONTIER
The combined objective in Eq.( 1) implies the existence of

a Pareto set. The slope of the Pareto curve (or frontier) has an
interesting relationship to coupling. Note that if the Pareto fron-
tier is non-convex, the linear scalar substitute function in Eq.( 1)
will need to be replaced by a nonlinear one. For the problem
described here, it is possible to describe the relation between the
optimum values of the two objectives as follows:

f ∗c = f ( f ∗a ) (9)

By differentiating Eq. 9 and making appropriate substitutions,
the slope of the Pareto frontier can be expressed as

d f ∗c
d f ∗a

=
wa

wc
ΓΓΓv

dddda

d fa

∗
(10)

The physical significance of the coupling vector ΓΓΓv, therefore, is
that it contributes to the slope of the Pareto frontier, leading to
the following observations:

1. If the coupling vector vanishes at one particular point, then
the Pareto frontier will have zero slope at that point. If this
point is not an end point of the Pareto frontier, then the curve
will either be non-convex or discontinuous at this point.

2. It is possible for a non-zero coupling vector to be present at
a point of zero slope. In this case, the coupling vector would

be orthogonal to the derivative
dddda

d fa

∗
.

3. Large changes in the direction of the coupling vector, while
not definitive, may be a warning sign of a non-convex or
discontinuous Pareto frontier, particularly when the deriva-

tive vector
dddda

d fa

∗
does not experience similar changes in its

direction.

Information about the nature of the Pareto frontier can be
useful in the design of a system. As noted, if the Pareto frontier
is determined to be non-convex, then a linear combination of ob-
jectives is not an effective formulation and another formulation,
such as an exponential weighted criteria function [28], will be re-
quired. If the Pareto frontier is both convex and continuous, then
it can be approximated by fitting a convex continuous curve to a
relatively small number of points. This can be useful when the
designer wishes to find points in a particular area of the Pareto
frontier. Methods do exist for finding points in specific areas
of the Pareto frontier, such as the normal-boundary intersection
method to find the “knee” [29]. However, the ability to approxi-
mate the curve is useful when another area of the Pareto frontier
is considered to be desirable. Determination of the approximate
curve has the potential to reduce the computational requirements
to solve a problem.
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Figure 3. CONFIGURATION OF POSITIONING GANTRY

5 ILLUSTRATIVE EXAMPLE: POSITIONING GANTRY
Consider a simple model of a positioning gantry, as shown

in Fig. 3. In this system, a mass M is connected to a fixed surface
by a linear spring with constant ks. A flexible inelastic belt is
connected to the mass and wraps around a pulley with radius r,
which is mounted on a DC motor with armature resistance Ra
and motor constant kt . The motor will be actuated by a voltage
signal. The displacement of the mass from its original position is
Z. The system can be modeled by the following equations:

ẋxx = AAAxxx+BBBu (11)
Z = CCCxxx (12)

xxx =
[

Z
Ż

]
(13)

AAA =

[
0 1

− k
m
− b

m

]
(14)

BBB =

[
0
1
m

]
(15)

CCC =
[

1 0
]

(16)
u = V (17)

m =
MrRa

kt
(18)

b =
kt

r
(19)

k =
ksrRa

kt
(20)

Figure 4. SCHEMATIC OF SYSTEM CONTROLLER

where the various symbols shown above are defined in the
Nomenclature section of this paper.

A state-feedback controller with a precompensator G and
gains KKK =

[
K1 K2

]
is applied to the system, as shown in Fig. 4.

This system will be optimized twice. In both cases, constraints
will be used to eliminate variables, transforming the problem into
an unconstrained system that fits the description given in the pre-
ceding sections. The artifact objective function fa will remain
the same, but the artifact design variables ddda and artifact con-
straint g1 will be changed to produce both an uncoupled and a
coupled optimization problem. The artifact objective will be to
maximize the steady-state displacement of the mass, Zss. The
controller objective function fc, controller design variables dddc,
and controller constraint g2 will take the same form in both for-
mulations. The controller objective will be to minimize a combi-
nation of the maximum voltage Vmax and the settling time ts. The
relative importance of Vmax and ts will be specified by parame-
ters.

5.1 Uncoupled System Optimization
The system optimization formulation is:

min
r,kt ,K1,K2,G

wa fa +wc fc (21)

subject to

g1 = c1 +
(

ktVss

rRa
− c2

) 1
2
− r ≤ 0 (22)

g2 = Mp−Mp,all ≤ 0 (23)
h1 = Zss−Zr = 0 (24)

The individual objectives fa and fc are given by

fa = −Zss =− ktVss

rRaks
(25)

fc = a1Vmax +a2ts (26)
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Parameter Value

M 2.00 kg

ks 0.75 N/mm

Ra 10.00 kΩ

Vss 10.00 V

Mp,all 5%

c1 2.50

c2 4.00

a1 15.00

a2 0.25

Table 1. Parameters for Optimization of Uncoupled System

Quantity Value

ddda =

 r

kt

  2.50 cm

10.00 N-m/A



dddc =


K1

K2

G




0.72

1.23

2.59


Zss 5.33 cm

ts 8.79 s

Vmax 13.83 V

Table 2. Results of Optimization of Uncoupled System

and the position overshoot Mp is given by

Mp = e−πς/
√

1−ς2
(27)

ς =
b+K2

2
√

m(k +K1)
(28)

where Vss is the steady-state voltage applied to the motor, Vmax is
the maximum applied voltage, ts is the 1% settling time, Mp,all
is the limit imposed on the overshoot, and Zr is the reference
signal entering the controller. The artifact weight wa and the
controller weight wc have strictly positive values between 0 and
1. The constraint g1 is formulated to ensure that the pulley radius
r is appropriate for the thickness of belt required for the forces
present.

The constraints were determined to be active by monotonic-
ity analysis and were used to eliminate the variables kt , G, and

K1, which creates a problem in which Eq. (8) is applicable. Using
the values shown in Table 1, the optimum solution and both cou-
pling metrics were calculated. The optimal values of the design
variables and of Zss, Vmax, and ts are given in Table 2. For all val-
ues of wa and wc in the specified range, Γv = 0 and ΓΓΓm =

[
0 0
]
,

and therefore both measures were consistent in indicating that the
system is uncoupled. These coupling measures are also consis-
tent with the results of the system optimization itself; identical
results were found for both sequential optimization and for si-
multaneous optimization with various combinations of weights.

5.2 Coupled System Optimization
Now, consider a different formulation of the system opti-

mization. In this case, the design variables are ks, Ra, G, K1,
and K2, the objective functions and constraints g2 and h1 are un-
changed, but constraint g1 is changed. The new constraint g1 is
formulated to ensure that the spring is sized appropriately for the
loads present.

min
ks,Ra,K1,K2,G

wa fa +wc fc (29)

subject to

g1 =
(

Vsskt

rRa
+ c4

)1.5

− c3− ks ≤ 0 (30)

g2 = Mp−Mp,all ≤ 0 (31)
h1 = Zss−Zr = 0 (32)

where fa and fc are given by Eq.( 25) and ( 26), respectively.
Again, monotonicity analysis was used to determine that all

constraints were active, and they were used to eliminate the vari-
ables ks, G, and K1, producing an unconstrained system. Again,
this creates a problem in which Eq. (8) is applicable. The prob-
lem was solved for the parameters in Table 3 and several sets of
weights. Results for two sets of weights are given in Table 4.
The first set given corresponds to the point “A” and the second
set of weights to the point “B” in Fig. 5.

In this case, both coupling measures are non-zero. This
agrees with the results of the system optimization; assigning dif-
ferent weights to the objectives fa and fc in the simultaneous
system solution yields different results. The sequential problem
cannot be solved in this case without additional constraints, since
it is unbounded. It can also be noted that the calculated slope of
the Pareto frontier given in Table 4 appears reasonable; estima-
tion of the slope from the points shown in Fig. 5 agrees with the
calculated results.

At no point does Γv vanish, nor does it experience any sign
changes. While this is a necessary condition for a convex contin-
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Parameter Value

M 2.00 kg

kt 10.00 N-m/A

r 2.50 cm

Vss 10.00 V

Mp,all 5%

c3 1.50

c4 1.00

a1 15.00

a2 0.20

Table 3. Parameters for Optimization of Coupled System

Value for Given Weights

Quantity wa = 0.4, wc = 0.6 wa = 0.7, wc = 0.3

ddda =

Ra

ks

  28.60 kΩ

2.21 N/mm

  38.75 kΩ

1.40 N/mm



dddc =


K1

K2

G



−1.43

15.81

14.40



−2.15

16.50

11.38


Zss 0.63 cm 0.74 cm

ts 6.64 s 8.70 s

Vmax 10.26 V 10.27 V

Γv 0.058 0.113

Γm

 0

0.0039

T  0

−0.0033

T

Calculated Slope
of the Pareto
Frontier Using
Eq. (10)

-3.73 -23.86

Table 4. Results of Optimization of Coupled System

uous Pareto frontier, it is not sufficient in the general case. How-
ever, in the unconstrained problem solved here, there is only one
independent artifact design variable da. In this case, the Pareto
frontier will be convex and continuous as long as the derivative
dddda

d fa

∗
does not vanish at any point. Neither this derivative, nor

the coupling vector, vanishes for any of the points computed.

Figure 5. PARETO FRONTIER FOR COUPLED SYSTEM OPTIMIZA-
TION

Therefore, it is conjectured that the Pareto frontier will be con-
vex and continuous, and that it would be possible to estimate the
full Pareto frontier by fitting a continuous convex curve to the
points shown.

6 RELATION BETWEEN COUPLING VECTOR AND
EASE OF CONTROL SURROGATE FUNCTION
If the coupling vector for a design and control optimization

problem vanishes, then the system optimum can be found by a
sequential optimization of the artifact and controller. This is not
the case for a system with a non-zero coupling vector. How-
ever, since sequential optimization offers the advantages of lower
computational demands, the separation of the problem by disci-
pline, and the ability to apply techniques such as optimal con-
trol theory, it is the preferred method of solving the co-design
problem. Therefore, a modified sequential approach (Fig. 6) that
would produce the solution set of the original problem is desir-
able. This raises the question of what form such a modified se-
quential problem might take, and how it relates to the coupling.

Assume that some surrogate for ease of control χ(ddda) is in-
troduced into the artifact objective function, such that the modi-
fied artifact objective is given by f ′a (ddda) = w1 fa (ddda)+w2χ(ddda).
The weights w1 and w2 can be varied to produce a set of designs,
for which the controller objective function can then be optimized.
The modified problem, then, can be formulated as

min
ddda

f ′a (ddda) = w1 fa (ddda)+w2χ(ddda) (33)

min
dddc

fc
(
argmin f ′a (ddda) ,dddc

)
(34)
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Figure 6. MODIFIED SEQUENTIAL SOLUTION METHOD

subject to

ggga (ddda)≤ 000 (35)
hhha (ddda) = 000 (36)
gggc
(
argmin f ′a (ddda) ,dddc

)
≤ 000 (37)

hhhc
(
argmin f ′a (ddda) ,dddc

)
= 000 (38)

The KKT conditions for this system can be written as

 ∂ fa

∂ddda
+

∂χ

∂ddda
∂ fc

∂dddc

+λλλ
T

 ∂hhha

∂ddda
∂hhhc

∂dddc

+µµµT

 ∂ggga

∂ddda
∂gggc

∂dddc

= 000 (39)

µµµT
[

ggga
gggc

]
= 000 (40)

λλλ 6= 000 (41)
µµµ≥ 000 (42)

Assume that the surrogate term is chosen such that, for any
sets of weights wa and wc in the original problem, there exists
some set of strictly positive weights w1 and w2 that will generate
the identical solution from the modified problem. In this case,
the KKT conditions can be equated, leading to the following re-
lation:

w2

w1

∂χ

∂ddda
= ΓΓΓv (43)

It can be observed from Eq. (43) that such a set of weights
will exist, and the modified sequential problem will produce the
Pareto optimal solutions, when the gradient of the surrogate ∇χ

is parallel to the coupling vector ΓΓΓv. This relation could be used
to evaluate the suitability of a particular surrogate function to de-
termine its accuracy in approximating the original problem. The
angle between the two vectors ∇χ and ΓΓΓv could be evaluated,
with a small angle corresponding to a close solution. A large
angle between the two vectors would indicate a poor choice of
surrogate function. If an appropriate surrogate function can be
found for a given type of problem, then it would be unnecessary
to calculate Γv, and that type of problem could be solved sequen-
tially. Such modified sequential formulations have been shown
highly effective in some cases [9]. Furthermore, it indicates that
in the case where there is only one artifact design variable ddda,
any surrogate function with appropriate monotonicity will be ef-
fective. Note, however, that the distribution of points for a given
set of weights will differ in the original and modified problem.

7 EXTENSION OF COUPLING VECTOR TO BI-
DIRECTIONAL COUPLING
As previously stated, the coupling vector ΓΓΓv was derived

based on the assumption of uni-directional coupling. While there
are many systems which exhibit uni-directional coupling, bi-
directional coupling is also an important phenomenon. There-
fore, it is useful to extend the coupling vector to these cases.
The extended coupling vector ΓΓΓvb can be found through the same
procedure used to derive the coupling vector ΓΓΓv [14]. Given the
system

min
ddda,dddc

f = wa fa (ddda,dddc)+wc fc (ddda,dddc) (44)

subject to

ggg(ddda,dddc) ≤ 000 (45)
hhh(ddda,dddc) = 000 (46)

its solution must satisfy the KKT stationarity condition

∇∇∇ f∗+λλλ
T

∇∇∇hhh∗+µµµT
∇∇∇ggg∗ = 000T (47)

Using the difference between the KKT stationarity conditions for
the sequential and simultaneous solutions, the coupling vector
for the case of bi-directional coupling is found to be

ΓΓΓvb =
[

wc

wa

(
∂ fc

∂ddda
+

∂ fc

∂dddc

ddddc

dddda

)
∂ fa

∂dddc
+

∂ fa

∂ddda

dddda

ddddc

]
(48)
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Note that the uni-directional coupling vector appears within the
extended coupling vector, and Eq. (48) can be re-written as

ΓΓΓvb =
[

ΓΓΓv
∂ fa

∂dddc
+

∂ fa

∂ddda

dddda

ddddc

]
(49)

As with the uni-directional coupling vector ΓΓΓv, the strength of
the coupling present can be quantified by evaluating the vector
norm ‖ΓΓΓvb‖2. As in the case of Γv, Γvb captures information
about the interactions between sub-systems, but does not provide
any insight into the relationships between variables within a sub-
system, as does Γm. The relationship between ΓΓΓvb and ΓΓΓm merits
further investigation.

8 CONCLUDING REMARKS
The existence of coupling in a system can be demonstrated

by using either the coupling vector or the coupling matrix. The
results will be consistent, despite the differing origins and theo-
retical basis of the two coupling measures. This raises the ques-
tion of when each measure is most appropriate.

In the cases where ΓΓΓv applies, it is easier to calculate, has a
clear physical interpretation, and would be the preferred method
of evaluating coupling. On the other hand, there are circum-
stances in which ΓΓΓv does not apply. If coupling is bi-directional,
multiple sub-systems exist, or the overall objective function can-
not be expressed as a linear combination of the individual func-
tions, then ΓΓΓv cannot be used, and ΓΓΓm would be the preferred
metric. Furthermore, ΓΓΓm would be useful in cases where a solu-
tion strategy based on decomposition and coordination is to be
used, since it explicitly accounts for local and global copies of
variables, and can be used in suspension strategies. In some cases
of uni-directional coupling where constraints cannot be easily
eliminated, it may be difficult to determine which metric is most
useful. Although ΓΓΓv is applicable in these cases, it fails to capture
all information about the interactions between the variables.

ΓΓΓv was shown to have an interpretation as a component of
the slope of the Pareto frontier. This indicates that changes in the
coupling vector can provide insight into the nature of the Pareto
frontier of the system, including the existence of discontinuities
and non-convexity. If the coupling vector at a small number of
points is known, it can be used to estimate the behavior of the
Pareto frontier between those points. This can assist a designer
in choosing which locations on the Pareto frontier are most ap-
propriate in his or her specific problem, and effort can be devoted
to computing solutions in that region of the Pareto frontier. This
would decrease the overall computational effort required to solve
the problem, without any loss of accuracy in the solution.

ΓΓΓv was further shown to provide a means to determine
whether a given surrogate for ease of control can be used to for-
mulate a modified sequential problem. If the gradient of a can-

didate surrogate function χ is parallel to ΓΓΓv, then it will provide
the exact solution set.

Finally, the coupling vector can be extended to provide a
measure of bi-directional coupling. This can be used, as can
the uni-directional coupling vector, as a measure of coupling
strength. It is anticipated that it will also have a variety of physi-
cal interpretations similar to those for the uni-directional case.

Future work should explore the use of a surrogate function
for ease of control in a modified sequential formulation. In ad-
dition, future work should evaluate the estimation of coupling a
priori, in order to use that information in selection of appropriate
solution methods for the combined design and control problem.
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