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ABSTRACT 
 Optimal design of an electrical microgrid and sizing of its 
components seeks to balance capital investment with expected 
operational cost while meeting performance requirements. 
Calculating operational cost requires scheduling each 
microgrid component over some time period (dispatching) for 
each design evaluated. Heuristic or rule-based dispatch 
strategies typically consider only single time instances and are 
computationally efficient but do not include scheduling energy 
storage for future time periods. In this paper, we propose to 
optimize microgrid designs using forward-looking optimal 
dispatch for future energy storage planning. We present a case 
study of an ‘islanded’ military base microgrid with renewable 
and non-renewable electricity generation, battery storage, and 
plug-in vehicles with electrical export power capability. The 
optimal design and forward-looking dispatch strategy are 
compared to results obtained using the publicly available rule-
based dispatch strategy in HOMER Energy software. Results 
show that the forward-looking strategy uses storage batteries to 
plan for future energy shortfalls rather than simply as a buffer 
for variable renewable energy supply, resulting in a 7.8% 
reduction in predicted fuel use. For the given cost assumptions, 
sensitivity analysis of the optimal design with respect to fuel 
price shows that investment in renewable energy technology is 
justified at prices greater than $5 per gallon ($1.32/liter) with 
an attendant reduction in fuel use of 3–30%. 

 
1 INTRODUCTION 
 Installing on-site energy generation offers the potential to 
reduce energy use and greenhouse gas emissions while 
increasing local energy security. These energy generation and 
storage devices, collectively called distributed energy resources 
(DERs), can be networked into a local electrical system called a 
microgrid. These microgrids have the ability to operate 
connected to or independent from the external electrical grid, 
and are particularly useful when energy security is important, 
and/or where electrical distribution infrastructure does not 

exist. Example applications include military bases [1], medical 
complexes, island communities [2], and remote towns [3,4]. 
 Designing a microgrid is often done using the expected 
peak load on the system, but this is a conservative approach 
that has the potential to oversize components, especially if the 
dispatch (operation and scheduling) of the components is not 
considered simultaneously to the system design. This 
necessitates a coordinated, system-level design and dispatch 
problem that considers the sizing of individual DER elements 
and their dispatch control strategy. 
 The complexity of solving the microgrid design problem is 
due to having to evaluate each design by determining the 
operation of the microgrid at discrete time steps over some time 
period. Much previous work developed various approaches for 
solving this dispatch problem, including linearization and 
solving a multi-period linear program [4–7], nonlinear 
programming over fixed time periods [8], use of derivative-free 
methods to solve individual time increments for minimum cost 
[9], sequential solution of each individual time period using a 
rule-based dispatch strategy [10], and decomposition of the 
time period into increments that are coordinated and solved 
using multi-disciplinary optimization (MDO) techniques [11]. 
These dispatch solution approaches typically use historical data 
for power loads, renewable energy supply, etc. and assume 
perfect knowledge (no uncertainty) to solve for the dispatch 
strategy. Other research has used model-predictive control to 
better represent actual microgrid operation to solve the multi-
period dispatch problem with a finite time horizon using 
expectations of system inputs and future microgrid states [12]. 
 A subset of this research also considers the optimal design 
of the microgrid in addition to solving the dispatch problem. 
Stadler et al. pose the design and dispatch problem as a an All-
in-One (AiO) problem for the entire year by linearization and 
solution using linear programming [7], thus increasing solution 
efficiency but at the limitation of linearizing submodels, such as 
diesel generator efficiency as a function of load, battery internal 
resistance as a function of state-of-charge, etc. Lu et al. solve a 
nonlinear microgrid design problem by decomposing it using 
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MDO techniques to solve each time increment individually 
while coupled to other time increments through battery storage 
linking variables [11]. However, their approach does not 
calculate a multi-component optimal dispatch; instead, they use 
non-dispatchable components (wind and solar) to determine 
when battery storage should charge or discharge. In addition, 
they solve the problem using one-day time increments, which 
does not consider the hourly dynamics of renewable energy 
supply and energy storage. Asano and Bando solve a nonlinear 
design and dispatch problem by separating the year into six 
representative days, then solving each day as a fixed AiO 
problem [8]. However, their approach does not consider the 
boundaries of the solved days by linking the time before and 
after the representative days. As such, the approach provides an 
approximation of the microgrid performance, but may differ 
from how the microgrid will be controlled and operated in 
practice. HOMER Energy solves the optimal design problem 
using a full-factorial design of experiments on number and size 
of components, and uses a rule-based dispatch strategy to 
evaluate the microgrid operation. Their approach solves the 
dispatch strategy for minimum cost in a single time increment 
without explicitly planning energy storage for future time 
increments [10].  
 Of the microgrid optimal design and dispatch approaches, 
only Momber et al. consider the dynamics of plug-in electric 
vehicles (PEVs), which have the added complexity of time-
dependent connection or disconnection to the microgrid [13]. 
Though HOMER Energy software can model scheduled 
generators, it does not currently have the ability to model 
scheduled energy storage (such as a PEV), nor coupled 
components, such as a vehicle engine charging a battery pack. 
 This paper proposes a new approach to solve the combined 
optimal design and dispatch strategy for a microgrid using 
nonlinear component submodels and solving the optimal 
dispatch using a moving time horizon to link the microgrid 
operation before and after each window of time. In addition, the 
problem formulation can consider time-variant connection of 
components to model the interaction of PEVs. This approach 
will take advantage of forward-looking energy storage 
scheduling while also approximating realistic control methods, 
such as model-predictive control (MPC). A case study is 
presented to solve the optimal design and electrical dispatch of 
an islanded military base supplied by diesel generators, battery 
storage, photovoltaic solar panels, and plug-in vehicles. The 
results will be compared to the design and dispatch of a similar 
system using HOMER Energy software as a benchmark. 
 
2 METHODOLOGY 
 The modeling of the microgrid and the methods used for 
performing optimal design with forward-looking optimal 
dispatch are as follows. 
 
2.1  Microgrid Model 
 A hub-based microgrid model similar to [14] was 
implemented in Matlab. In this model, a microgrid is separated 
into a network of power conversion and storage hubs, where 
each hub can contain various energy storage and conversion 
devices.  An example microgrid hub is shown in Fig. 1. 
 

 
Figure 1. Example microgrid hub with energy conversion 

and storage devices 
 
Each hub can be mathematically represented by Eq. 1: 

 𝑳 =  𝑪𝑷 − 𝑺�̇�         (1) 
 

where L is a vector of power loads required at each hub 
(electricity, heat, etc.), P is a vector of power inputs to the hub 
(electricity, natural gas, steam heat, etc.), C is a matrix of power 
conversion factors to determine how each power input is 
transmitted or converted into a power output, �̇� is a vector of 
changes in stored energy, and S is a matrix of conversion 
efficiencies of the energy storage devices. This system of 
equations is solved for each time increment, t. The conversion 
factors c and s are constant for a single time increment, though 
they may change nonlinearly with system state. For more 
details on hub-based microgrid modeling, refer to [14, 15]. 

The individual hub models are connected in a network that 
uses conservation of energy to calculate power transmission 
and transmission losses. In this implementation, transmission 
losses are modeled as a constant transfer efficiency, 𝜂்ோ, of the 
power transferred between hubs. This implementation only 
calculates bulk power flows and does not consider reactive 
power or electrical dynamics within the system.  
 To satisfy conservation of energy, one dispatchable element 
of the microgrid is treated as ‘dependent’, and its dispatch is 
determined by the power production and consumption of the 
rest of the system. In a grid-connected system this can be 
represented by the external grid, but for an islanded system (not 
grid-connected) one device must be selected as the dependent 
element. This is shown in Eq. 2, where a diesel generator is 
operated as the dependent device and its dispatch is determined 
by the power balance of the system. 
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In this equation, Pi is the power input to hub i and Pgen is the 
generator output, solved at time t. If the net power required by 
the hubs is negative, i.e. if they are producing more power than 
they require, the dependent generator is run at zero load and the 
excess energy is assumed to be fed to ground or otherwise 
dissipated. 

 
2.2  Optimization Problem Formulation  
 The overall objective of the microgrid design problem is to 
minimize the cost of implementing and operating a microgrid 
for some given area. For an islanded microgrid running mainly 
on diesel generators, the objective becomes minimizing the 
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combined annual fuel costs and annualized capital costs. 
Variables for the optimization include the size of DER 
components, number of vehicles, and dispatch of the DER 
components at each time step. The operating cost of the system 
is determined by solving the optimal dispatch problem, and the 
optimal dispatch is typically different for each microgrid 
design; thus, the optimal dispatch problem is nested within the 
optimal design problem. The design and dispatch problems 
cannot be solved simultaneously (all-in-one) because, to make 
the problem tractable, the optimal dispatch problem is setup as 
a series of optimization problems solved over a moving time 
window. If the optimal dispatch problem was known to be 
convex, this nested problem structure could be proven to 
provide the global optimal design [16]. However, in the current 
formulation there are non-convex functions within the dispatch 
problem, thus there is the possibility for multiple optima and no 
generalities can be made about global optimality or combined 
optimality.  
 A generalized problem structure is shown in Figure 2. The 
optimal design problem (outer loop) passes a vector of design 
variables to the optimal dispatch problem (inner loop). These 
design variables are treated as parameters (held fixed) by the 
optimal dispatch problem. The optimal dispatch problem is 
solved over a 24-hour time horizon (t0 to thoriz) and then stepped 
forward one hour in time and re-solved, until the entire time 
period of interest (T1 to Tfinal) is completed. For each time 
horizon, only the vector of optimal dispatch for the first time 
step, t0, is saved as part of the overall optimal dispatch matrix, 
û(T,x). At the end of the series of optimal dispatch problems 
(inner loop), the optimal dispatch matrix is returned to the 
optimal design problem along with the total fuel use over the 
time period from T1 to Tfinal, f2(x,û), and the feasibility 
information of the optimal dispatch problem, ĝ and   . 

Optimizing the dispatch over a forward-looking time 
horizon is necessary to determine the optimal energy storage 
strategy, which requires decision-making over multiple time 
increments. Ideally the entire time period from T1 to Tfinal would 
be solved simultaneously, but it is necessary to decompose the 
time period into a series of overlapping time windows (the time 
horizon) because solving the optimal dispatch for all time 
increments simultaneously is computationally infeasible, 
especially for a nonlinear problem. The dimension of the 
dispatch optimization problem increases linearly with the 
number of hours solved simultaneously; for example, solving 
the optimal hourly dispatch for a single DER over an entire 
year requires 8760 variables, which quickly becomes 
intractable for nonlinear programming algorithms. In this case, 
a 24-hour time horizon was chosen because the solar supply 
and power loads also follow a 24-hour cycle. Some optimal 
dispatch approaches only optimize for individual hours 
sequentially to reduce their computational requirements but 
these approaches cannot take advantage of look-ahead planning 
of the energy storage.  

 

 
Figure 2. Optimal design and dispatch structure 

 
As mentioned in the Introduction section, many approaches 

for solving optimal dispatch use linearized submodels and 
linear or quadratic programming, but this model uses nonlinear 
submodels for the generator efficiency, and energy storage 
efficiency is discontinuous based on whether it is charging or 
discharging. Therefore, a nonlinear programming algorithm, 
sequential quadratic programming (SQP), was used to solve the 
optimal dispatch problem. The SQP code chosen was the 
fmincon function in Matlab using an active-set strategy and 
finite-differencing to calculate gradients. It could be possible to 
linearize the model and solve it more quickly using linear 
programming, but this would result in an unknown reduction in 
fidelity, especially considering the nonlinear efficiency of diesel 
generators when operating at low load. The optimal dispatch 
formulation for a single time horizon is shown below. 

 
 
Min:   fuel cost for time horizon  
 
 
w.r.t.: 𝜈ଶ௧   % load of secondary generator, ∀𝑡 Δ𝑆𝑂𝐶௦௧௧௧  change in stationary battery SOC, ∀𝑡 Δ𝑆𝑂𝐶௩௧  change in vehicle battery SOC, ∀𝑡, ∀𝑘 

 
subject to:  𝐸௦௧௧ ≤ 𝐸௦௧௧௧ ≤ 𝐸௦௧௧ stationary batt. energy limits, ∀𝑡 𝐸௩ ≤ 𝐸௩௧  ≤ 𝐸௩  vehicle batt. energy limits, ∀𝑡, ∀𝑘 ∑ 𝑃௧୧ ≤ 𝑃തଵ௧  main generator min. power, ∀𝑡 Δ𝑆𝑂𝐶௩௧ 𝑐𝑜𝑛௧ = 0 vehicle connectivity, ∀𝑡, ∀𝑘 

 0 ≤ 𝜈ଶ௧ ≤ 1.0   ∀𝑡 −10% ≤ Δ𝑆𝑂𝐶௦௧௧௧ ≤ 10%  ∀𝑡 −30% ≤ Δ𝑆𝑂𝐶௩௧  ≤ 30%   ∀𝑡, ∀𝑘 
 𝑡 ∈ {1, . . ,24};  𝑘 ∈ {1, . . , 𝑁௩௦};  𝑐𝑜𝑛 ∈ {0,1} 
 
 

In the preceding formulation, t is the current time increment, k 
is the vehicle index, 𝑐𝑜𝑛௧  is the vehicle connectivity parameter 
of vehicle k at time t (where connected = 0), i is the hub index, 
pfuel is the fuel price, Efuel is the fuel energy used, Estat is the 
stationary battery energy, Eveh is the vehicle battery energy, Pi is 

 𝑝𝑓𝑢𝑒𝑙𝐸𝑓𝑢𝑒𝑙𝑡𝑡ℎ 𝑜𝑟𝑖𝑧
𝑡=1ĥ 
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the power input required at hub i, Pgen1 is the main generator 
power, and overbars and underbars represent upper and lower 
limits, respectively. The addition of the vehicle connectivity 
equality constraint allows for the vehicle connectivity vector 
(binary) to define when a vehicle is attached to the microgrid, 
and therefore when charging or discharging can be non-zero. 

Solving the series of SQP problems for the optimal 
dispatch results in a numerically noisy function for operating 
cost because small changes in algorithm convergence propagate 
through the series of SQP problems. Therefore, the optimal 
design problem was solved using the DIRECT derivative-free 
algorithm, which can handle noisy objective functions [17]. The 
design optimization formulation is presented below. 

 
Min: annualized capital cost +  annual fuel cost   1𝐿௫ 𝑝௫𝑥௫ +  𝑝௨𝐸௨்்ೌ

்ୀଵ  

 
w.r.t.: 𝑁௩ number of plug-in vehicles (integer) 𝐸ത௩ vehicle battery energy capacity (kWh) 𝐸ത௦௧௧ stationary battery energy capacity (kWh) 𝑃ത photovoltaic panel peak power (kW) 𝑃തଵ main generator max. power (kW) 𝑃തଶ secondary generator max. power (kW) 

 
subject to:  𝑃തଶ ≥ 𝑃௧ critical power maintenance 𝒈ෝ(𝒖ෝ) ≤ 𝟎   𝒉(𝒖ෝ) = 𝟎 

 1  ≤   𝑁௩    ≤   5  3  ≤   𝐸ത௩    ≤   20 kWh   20 ≤   𝐸ത௦௧௧  ≤   80 kWh  20 ≤   𝑃     ≤   160 kW  10 ≤   𝑃തଵ  ≤   120 kW  10 ≤   𝑃തଶ  ≤   120 kW  
 

In the preceding formulation, px is the capital cost for 
component x, Lx is the expected lifetime of component x, Pcritical 
is the maximum power required at the critical hub, ĝ and h are 
vectors containing the values of the dispatch problem inequality 
and equality constraints at its optimum (û), and the other 
variables are defined in the problem statement. 

The objective is a function of both the annualized capital 
costs (design) and the annual operating costs from the optimal 
dispatch problem. Most of the constraints on the design 
problem are simple bounds on the size of the components. The 
critical power constraint ensures that the critical hub can be 
maintained by the secondary generator alone, in the event that 
part of the microgrid fails (explained in detail in the Case Study 
section). Lastly, there is a constraint to ensure feasibility of the 
optimal dispatch problem. 

 
3 CASE STUDY 
 As a case study to implement this approach, a small 
military forward-operating base (FOB) was modeled. These 

bases typically operate islanded (not connected to an external 
electrical grid) and the electrical power is provided by diesel 
generators, which often operate at low-efficiency, part-load 
conditions due to the changing electrical demand. The fully-
burdened cost of fuel for the U.S. Army can range upwards 
from $5 per gallon ($1.32/liter), with one study estimating the 
full cost of a gallon of JP-8 at $13.68/gallon ($3.61/liter) [18]. 
Thus, the capital investment in renewable energy could be 
justified to reduce fuel cost. 
 In addition, the military is investigating the use of plug-in 
vehicles to support these FOB microgrids. Future military 
vehicles, such as the proposed Joint Light Tactical Vehicle 
(JLTV), will have significant on-board electrical power 
generation, potentially offering up to 30 kW of export power as 
well as modest battery storage. During vehicle operation this 
will be used for auxiliary electrical loads rather than vehicle 
propulsion, but when the vehicles are parked they could 
provide additional storage for the microgrid as well as power 
generation capability. 
 The hypothetical forward-operating base (FOB) modeled 
for this study is a small, 50-soldier FOB near Kabul, 
Afghanistan. The base is remote and thus its microgrid is 
islanded from any external grid. The microgrid is modeled as 
four separate hubs, radially connected from a central power-
supply hub as shown in Figure 3. The main power hub (Hub 1) 
contains the main diesel generator, photovoltaic array, and lead-
acid stationary battery. The other hubs consist of a vehicle 
connection hub (Hub 2), where vehicles can store or supply 
energy to the microgrid; a housing hub that is solely an energy 
consumer (Hub 3); and a “critical” hub (Hub 4) containing 
communications, medical treatment, etc. where power must be 
maintained at all times, thus it has an additional (secondary) 
diesel generator. In this model, the generator in Hub 1 is used 
as the dependent device, so its dispatch level is determined by 
the power balance of the rest of the system. 

 

 
Figure 3. Schematic of microgrid hubs for the Forward 

Operating Base case study 
 
3.1  Benchmarking Case 

The forward-looking optimal dispatch strategy was 
benchmarked against the dispatch strategy in HOMER Energy’s 
microgrid modeling software. HOMER was chosen because it 
is publicly available for microgrid modeling, it is quick to 
implement, and it has the capability of using nonlinear 

optimal dispatch problem feasibility 

ĥ 
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submodels (e.g., for the diesel generators). As mentioned in the 
Introduction section, HOMER uses a rule-based strategy to 
sequentially decide the dispatch at each time increment, linked 
only to other time increments through the boundary conditions 
of energy storage state-of-charge (SOC). For this study, the 
“cycle charging” strategy was chosen within HOMER. Using 
this strategy, HOMER decides the minimum cost dispatch 
strategy at each time increment while attempting to only run 
diesel generators at maximum load, using excess generator 
power to charge energy storage. In addition, this strategy seeks 
to reduce battery degradation by using a soft target for the 
lower bound of battery SOC. For more details on HOMER’s 
dispatch strategy, please refer to [10].  

The case study was simplified in order to precisely match 
our model to a model in HOMER. Most importantly, HOMER 
does not have the capability to model coupled systems, such as 
a plug-in vehicle where the vehicle engine can charge the 
battery when it drops below a state-of-charge set point, nor is 
HOMER able to model batteries that are selectively connected 
and disconnected from the system, as is the case with a PEV. 
Thus, PEVs were not used for the dispatch strategy 
benchmarking study. Also, HOMER uses a different PV panel 
submodel, so its solar panel output  power was directly input to 
our forward-looking model. The solar panel output over the 
entire year is shown as a density map (hour vs. day) in Fig. 4. 

 
Figure 4. HOMER solar panel power output for  

one year near Kabul, Afghanistan 
 
 Power transmission between hubs was modeled without 

losses, but conversions from AC to DC, and vice versa, had 
efficiencies of 0.9 for each direction. Likewise, battery charging 
and discharging had a constant efficiency of 0.9 for each 
direction. The layout of the HOMER model is shown in Fig. 5.  

 

 
 

Figure 5. HOMER microgrid model used for benchmark 

The other submodels that were commonized between the 
two models were the diesel generator efficiency and power load 
over the year. For the diesel generator model, generator 
efficiencies at various loads were gathered on Cummins diesel 
generators in rated powers from 10 – 300 kW [19]. A response 
surface model was created to calculate the generator efficiency 
as a function of generator size and load, with the response 
shown in Figure 6.  

 
Figure 6. Model of diesel generator efficiency as a function 

of generator rated power and load 
 

The electrical power load was based upon the number of 
soldiers at a small forward operating base (50) and the 
estimated average and peak power loads per soldier (1.5 – 2 kW 
per soldier). Due to lack of measured data, the daily power load 
is generically represented by a base load with an afternoon peak 
and night-time trough. Example power loads for each hub over 
one day are shown in Fig. 7. 
 

 
Figure 7. Power load for each hub for Jan. 15th  

overlaid with total load 
 
These base power loads for a given day were modified by 
seasonal average temperature data for the chosen region by Eq. 
3, where the deviation from a “goal” temperature is used to 
approximate heating and cooling load changes. 
 𝐿ௗ = 𝐿[0.65 + 0.023𝑚𝑎𝑥(0, 𝑇௩ − 𝑇) +  

0.016max(0, 𝑇 − 𝑇௩)]        (3) 
 
In this equation, 𝐿ௗ is the daily power load, 𝐿 is the average 
power load over the year, 𝑇௩ is the average air temperature for 
a given day (°F), and 𝑇 is the goal temperature, chosen to be 
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65 °F. The average daily temperature for the region was taken 
from historical data, as shown in Table 1. 
 

Table 1. Average monthly high and low temperature  
for Kabul, Afghanistan (°F) [20] 

 1 2 3 4 5 6 7 8 9 10 11 12
High 40 41 54 66 75 86 89 89 83 72 59 46
Low 19 21 33 42 47 54 59 57 48 39 29 23

 
 Nominal sizes were chosen for the microgrid components 
based on a HOMER sizing study with a three-level, four-
variable, full-factorial design of experiments. The component 
sizes for the dispatch benchmarking comparison are shown in 
Table 2. 
 

Table 2. Component sizes used for benchmark study 

Main Generator 
(kW) 

Critical 
Generator (kW) 

PV panel 
(kW) 

Storage Battery
(kWh) 

70 50 97 48 

 
3.2  Design Optimization Case 
 To run the design optimization with forward-looking 
optimal dispatch, some changes were made from the dispatch 
benchmarking case study. The changes included addition of 
plug-in vehicles to the microgrid, addition of power 
transmission losses between hubs, a different photovoltaic 
model, and running the dispatch for less than a full year to 
increase the speed of calculating the optimal dispatch for each 
design. Additionally, the capital cost of the components was 
calculated for each design in addition to the operating costs. 

The vehicles are modeled as power-export devices, where 
the battery pack state-of-charge can range from 30 – 100%. If 
the SOC drops below 30%, the vehicle engine can run an 
electrical generator to recharge the battery to 40% SOC. The 
vehicles use their diesel engines through 30 kW integrated 
starter/generators to provide electrical power, so the charging 
load is fairly low with an efficiency of 23%.  

The vehicles are modeled with a fixed schedule of 
connection and disconnection from the grid to represent their 
daily use, and this schedule was randomly assigned to each 
vehicle based upon a 70% probability of being connected 
during any one-hour period. Though the schedule was 
randomly defined, the same schedule was used for each case 
studied to allow for comparison. The vehicle fuel use while 
driving was assumed constant and excluded from this analysis. 

The efficiencies of charging both the Li-ion and lead-acid 
batteries, PV array inverter efficiency, and electrical line losses 
between hubs were modeled linearly with constant efficiencies 
as listed in Table 3. The batteries were modeled as perfect 
storage devices with losses incurred only during charging and 
discharging. The power output from the PV array scaled 
linearly with solar irradiation and rated power, which was based 
on a 1 kW/m2 peak solar irradiance with a 0.95 derating factor. 
 
Table 3. Electrical transmission and conversion efficiencies 

 
Transmission 
between hubs 

Battery 
Charge/Discharge 

PV panel 
Inverter 

Efficiency 95% 90% 94% 

The solar irradiance for the week modeled is taken from 
HOMER, which uses NASA satellite data at approximately this 
location. Due to the high variability of solar supply (due to 
clouds, etc.), the hourly solar irradiance was averaged using 
one week before and after the days studied to smooth out the 
supply and represent an average day at that time of year. The 
averaged solar irradiance used is shown in Fig. 8. 

 
Figure 8. Averaged solar irradiance for Kabul, Afghanistan 

 
Solving the optimal dispatch for a single design over an 

entire year is computationally intensive, taking 2–3 hours on a 
2.8GHz, quad-core i7 processor PC with 8GB of RAM. 
Therefore, steps were taken to estimate the operating costs 
based on the optimal dispatch for representative days of the 
year. This approach is a modified version of Asano and Bando’s 
[8] but in this case the representative days were linked to 
preceding and following days, and the total annual operating 
cost was estimated using these representative days.  

The optimal dispatch problem was initially solved for three 
consecutive days during the middle of each month of the year 
for four different microgrid designs. Based on these results it 
was determined that the fuel use for one day in February, 
March, November and December could be related to the fuel 
use in January and all other months could be related to the fuel 
use in July using on the ratios in Table 4. Other microgrid 
designs were tested with this method and the prediction 
accuracy for each was greater than 94%. Using this approach 
allowed for the entire year’s fuel use to be estimated by solving 
the optimal dispatch for three consecutive days in January and 
July, which substantially reduced computation time. The final 
optimal designs were then re-run for the entire year to get their 
true fuel use for comparison. It is important to note that these 
ratios will be different for any location studied due to 
differences in seasonal temperatures,  solar energy supply, and 
base power loads. 
 

Table 4. Ratios for estimating monthly fuel use based on 
January or July fuel use 

Feb Mar Apr May Jun Aug Sep Oct Nov Dec 

0.95 0.75 0.99 0.81 0.88 0.98 0.82 1.05 0.80 0.95

 
The capital costs of the microgrid components are 

functions of their sizes and the capital costs were “annualized” 
to enable trading  off with annual operating cost.  The capital 
cost of diesel generators and photovoltaic arrays are functions 
of their maximum power, p (kW), and battery costs are a 
function of their capacity, c (kWh), as shown in Table 5. 
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Table 5. Capital cost equations as a function  
of component size 

Component Capital Cost Equation ($) Reference 

Generators 1352(p0.631) [21] 

PV array 8431(p0.983) + 3000 [21] 

Lead-acid Batt 190c [22] 

Li-ion Batt 700c [23] 
 
The annualized capital costs are calculated by dividing the 
capital cost by expected usable life (the net present value of the 
capital was not considered). The lifetimes were estimated based 
upon lifetimes reported by Lawrence Berkeley National Labs 
[21], but the PV life was reduced from 20 to 15 years based on 
the rigors of military use and portability. These lifetimes are 
summarized in Table 6. Of course, there is always danger in 
estimating capital costs due to the large uncertainty for the cost 
and life of a specific device as well as the unknown cost of 
transporting this capital equipment to remote areas. However, 
to perform design optimization it is necessary to estimate these 
capital costs in order to tradeoff with the potential energy cost 
savings they offer. 
 

Table 6. Lifetime estimates for capital equipment 
 Diesel 

Gen. 
PV 

Array 
Lead-Acid 

Battery 
Li-ion 
Battery 

Lifetime (yr) 15 15 8 8 
 
Baseline Design and Sensitivity Analysis 

A baseline case was optimized to represent the “business as 
usual” approach of providing all electrical power from diesel 
generators with no energy storage, renewables, or plug-in 
vehicles. The baseline case optimized the size of two diesel 
generators to minimize the estimated fuel use over one year. 
Fuel cost was not considered for the baseline cases because the 
only option for power generation was diesel generators, thus 
there was no tradeoff with capital cost. That is, the most cost-
efficient option is independent of fuel price. 

After the baseline case, the full system was optimized with 
the whole range of components. The fuel prices considered 
were $5, $10, and $15 per gallon ($1.32, $2.64, and $3.96 per 
liter), which represents a typical range for the fully-burdened 
fuel cost for the U.S. Army. 

 
4 RESULTS & DISCUSSION 

The first results are to compare the one-year dispatch 
strategy from HOMER and from the forward-looking optimal 
dispatch strategy. Next, the optimal design results are shown, 
with sensitivity analysis performed while varying fuel price. 
 
4.1  Dispatch strategy comparison 

The forward-looking optimal dispatch resulted in total 
yearly fuel use of 36,000 gallons compared to 39,050 gallons 
using HOMER’s dispatch strategy, a 7.8% reduction. The fuel 
use difference can be explained by the differences in the 
dispatch strategy of the energy storage. Summary plots were 
generated showing statistical analysis of the energy storage use 
over the entire year for both HOMER’s dispatch strategy and 

the forward-looking strategy (Fig. 9). The plots show both the 
mean battery power for each hour of the day as well as the 
distribution around the mean. 

 

 
 

 
Figure 9. Hourly mean and distribution of battery power: 
(top) HOMER, (bottom) forward-looking optimal dispatch 

 
The forward-looking optimal dispatch is able to plan the 

battery storage over multiple time periods, resulting in higher 
power battery use in the middle of the day (10am – 1pm) 
compared to HOMER, as shown in Fig. 9. This shows that the 
optimal dispatch can plan for both the presence and absence of 
solar energy, whereas HOMER’s single-time period dispatch 
strategy cannot plan ahead for these occurrences.  

To see this effect in more detail, an example of the power 
and energy states of the system are plotted for a single day 
(June 1st) in Fig. 10. This figure only shows the results from the 
forward-looking optimal dispatch to show how it plans the 
battery state-of-charge. 
 

 
Figure 10. Microgrid power and energy states for June 1st 

(forward-looking optimal dispatch only) 
 

As seen in Fig. 10, the forward-looking dispatch can predict 
that the solar supply will exceed the total power load beginning 
around 11am. Therefore, from hour 7 to 10 the strategy reduces 
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the generator load and instead uses stored battery energy to 
supply the load. Then, from hour 10 to 13 the excess solar 
power is stored in the battery, replenishing its SOC. Finally, as 
solar power falls below the peaking power demand from hour 
14 to 18, energy is again drawn from the battery while the 
generator is slowly ramped up. These actions help reduce the 
fuel use of the generator, especially in the transitional periods 
where load is high but solar supply is low. Note that the battery 
is not used significantly overnight because its capacity (48 
kWh) is only enough to supply the entire load for a single hour. 
Instead, the strategy decides to operate a single generator at 
high load to supply the overnight power demands. 

The difference in fuel use of the forward-looking strategy 
is modest relative to HOMER, which shows that HOMER is a 
useful tool for quickly designing small microgrid systems. 
However, its use of full-factorial DOE to generate designs 
limits its scalability to larger systems, and it also has the 
limitation of not being able to implement coupled systems such 
as PEVs, nor the ability to combine its dispatch strategy with 
nested energy management strategies, such as a separate PEV 
charging strategy. Therefore, the designs generated by HOMER 
may differ from designs generated with a forward-looking 
optimal dispatch strategy, especially for energy storage size. 
 
4.2  Optimal microgrid design 

The optimization results for the baseline design (generators 
only) and various fuel prices are shown in Table 7. The total 
fuel cost for the baseline design is relative to a $5/gallon fuel 
price, though as previously mentioned the fuel use is 
independent of fuel price for these cases, so the total fuel cost 
for any price can easily be calculated. 
 

Table 7. Optimization results compared to baseline case 
  Baseline  Designs with Renewables  

  $5/gal $5/gal $10/gal $15/gal 

Total Cost $ 272,540  $ 286,040 $ 491,000 $ 678,290 

Fuel Cost $ 268,100  $ 259,500 $ 383,000 $ 539,700 

Capital Cost $    4,440  $   26,540 $ 108,000 $ 138,590 

Main Gen. (kW) 11.9 60.0 23.0 48.9 

Solar Panel (kW) - 22.6 105.6 136.7 

Main Battery (kWh) - 83.7 86.7 95.6 

Secondary Gen.(kW) 110.7 58.9 70.0 62.6 

Vehicle Batt. (kWh) - 9.9 4.7 9.0 

Number of Vehicles - 1 1 1 

Fuel Use (gallons) 53,620 51,900 38,300 35,980 

% Fuel Reduction - 3% 29% 33% 

 
The results show that the optimal design increases the 

amount of renewable power and storage battery capacity as fuel 
price increases, thus reducing fuel use. The optimal design at 
$5/gallon shows fuel use reduction of 3%; however, the overall 
cost increases slightly from the two-generator case due to the 
high expense of the solar panels. As the fuel price increases, the 
fuel reduction increases up to 33%; the major design changes 
are that the solar panel power and stationary battery size 

increase. For these cases, the marginal cost of the additional 
solar panels is less than the marginal cost of the fuel saved. 
Thus, fuel use is decreased as well as overall yearly cost as 
shown in Fig. 11. 
 

 
Figure 11. Sensitivity of total yearly cost (operating + 

capital) to fuel price 
 

The 137 kW solar panel array proposed for the $15/gallon case 
may be impractical, simply due to its size. However, what this 
analysis shows is that as the fuel cost increases, the high cost of 
solar panels is justified, even if the overall size that can be 
implemented is limited. 

The results also show that the optimal system only uses the 
minimum number of vehicles. In fact, if the optimization were 
allowed to have zero plug-in vehicles it is expected this option 
would be chosen. The reason for this is that the benefits of the 
PEVs, energy storage and generation, are dominated by less 
expensive, higher efficiency stationary storage and generators. 
This is especially true because the PEVs generate electricity at 
low efficiency (22%) relative to the stationary generators 
because the PEV engines and generators are mismatched in 
power (200 kW vs. 30 kW), thus the engines operate at low 
load when running the generators.  

The PEVs would be more useful to the microgrid in the 
absence of stationary batteries and/or stationary generators. 
However, the generation efficiency would still be low and the 
fuel use would be relatively high. In this case, the fuel use 
could be reduced if the vehicles’ engines and generators were 
similar sizes, thus allowing the engines to run at high load and 
high efficiency. 

Though this case study is focused on an islanded military 
base, the conclusions are applicable to civilian situations where 
fuel price is relatively high (e.g., the European Union, island 
communities) and there is no infrastructure to connect to an 
external electrical grid. For cost-effectiveness and additional 
fuel use reduction in the civilian case, it would be beneficial to 
study the use of wind power and combined heat and power in 
addition to the PV/battery system studied here. 

5 CONCLUSIONS 
 Forward-looking optimal dispatch can be a useful approach 
for designing microgrids with energy storage elements. The 
ability to forecast future scenarios enables greater flexibility in 
use of storage, which can result in designs with lower fuel use. 
The strategy presented herein is capable of dispatching plug-in 
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vehicles with variable connectivity to the microgrid and can 
model coupled components such as an engine that operates 
passively to charge a vehicle  battery under states of low battery 
SOC. This forward-looking optimal dispatch strategy can be 
nested in an optimal design formulation, which is more 
scaleable than full-factorial design approaches and can generate 
designs with better use of energy storage. 
  Under the islanded forward-operating base scenario 
presented here, design optimization results show that the 
minimum cost designs reduce fuel use from 3–30% by using a 
microgrid of renewable energy, storage batteries, and plug-in 
vehicles to augment the typical generator-based electrical 
supply. This fuel reduction comes from the renewable energy 
source with a forward-looking electrical storage strategy, 
downsized generators, and increased generator load, which 
increases efficiency. The capital cost of this system can be 
justified when the fuel cost is greater than $5/gallon 
($1.32/liter), which is at the low end of the fully-burdened cost 
of fuel for a U.S. Army forward base. Above this fuel price, the 
addition of renewables and energy storage can save both fuel 
and overall cost. This economic analysis does not consider the 
additional savings due to reduced re-supply trucks necessary to 
provide fuel to the base. The fuel saved for this base is 
equivalent to 7 military tanker trucks per year, which saves not 
only additional fuel but reduces the risk to soldiers to 
improvised explosive devices (IEDs) and other supply-line 
dangers. However, practical issues may limit the size of solar 
panels, storage batteries, etc. that can be added to a small base, 
due to transport logistics, maintenance, and vulnerability. These 
are issues for further study. 
 For this case study, vehicles are not chosen to be a large 
contributor to the microgrid. This is because their benefits, 
energy storage and energy generation via the engine, are also 
present in other more efficient and lower cost options. Thus, the 
stationary storage batteries and stationary generators are chosen 
instead of additional vehicles. However, for bases where either 
the stationary batteries and/or generators are not present, the 
vehicles would then become useful. In addition, the vehicles 
could provide immediate, short-term grid support under crisis 
situations where there is a loss of power generation capacity. 
These scenarios are planned for future studies. 

Though these results are applied to an islanded military 
base, they are applicable to civilian cases where fuel price is 
greater than $5/gallon ($1.32/liter) and there is no infrastructure 
available to connect to an external electrical grid. Examples of 
this situation include island communities, remote towns, etc. 

This study is limited by the assumptions made for model 
inputs and the specifics of the location and microgrid studied. 
Improvements should include actual measured power load data  
and more realistic, nonlinear submodels for the batteries and 
PV array. In addition, this model was solved deterministically 
assuming perfect future knowledge. Ideally, this system should 
be optimized while considering the uncertainties in solar 
availability, power load, vehicle plug-in, etc. Furthermore, this 
study only looked at a single microgrid topology with fixed 
components. Future studies should include variable numbers 
and types of components, as well as the addition of wind power 
and other renewable energy sources as options. 

Future work should also investigate the use of optimal 
control techniques. Such techniques may include Model 
Predictive Control (MPC) and various methods for trajectory 
optimization.  A variety of computationally efficient methods 
have been developed for the trajectory optimization problem, 
including pseudospectral methods [24–26].  By formulating the 
microgrid scheduling problem in state-space form, such 
methods can be applied to the problem of optimal power 
dispatch of the microgrid. 
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