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Abstract: Optimization of a ‘smart’ product requires optimizing the design of both the artifact
and its controller. If the artifact and control optimization are coupled, then a combined approach
is typically used in order to produce optimal solutions. The combined approach presents certain
disadvantages, however. In particular, it precludes the decomposition of the problem into smaller
functional sub-problems, and requires the formulation of both the artifact and control objectives
and constraints before solving either optimization problem. In this paper, it is shown that a
modified sequential approach utilizing a Control Proxy Function (CPF) can be used to produce
optimal, or near-optimal, solutions while allowing this decomposition. Two physical bases for
CPFs are presented, natural frequency and the controllability Grammian matrix, and their
range of applicability is discussed. These concepts are demonstrated on a positioning gantry
example.
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1. INTRODUCTION

The design of many systems requires both the design
of the physical system, or artifact, and a controller. In
the optimal design and control of such ‘smart’ systems,
both an artifact objective function, fa, and a control
objective function, fc, may be formulated, subject to
artifact inequality and equality constraints, ga and ha,
and control inequality and equality constraints, gc and hc.
These objectives and constraints are functions of artifact
and controller design variables, denoted as da and dc,
respectively. In the most general case, all of the objectives
and constraints may be functions of both sets of variables,
i.e., fa = fa (da,dc), ga = ga (da,dc), ha = ha (da,dc),
fc = fc (da,dc), gc = gc (da,dc), and hc = hc (da,dc).
This optimal design and control problem, denoted as co-
design, can present special challenges when the design of
the artifact and controller are dependent on one another.
In this situation, the solution of the bi-objective co-design
problem given by Eqs.(1) - (5) is a Pareto set, with the
various Pareto points found by varying the weights wa

and wc, and the problem is said to be coupled.

min
da,dc

wafa + wcfc (1)

subject to ga ≤ 0 (2)

ha = 0 (3)

gc ≤ 0 (4)

hc = 0 (5)

When all of the objective and constraint functions depend
on both da and dc, coupling is said to be bi-directional.
However, there is a large class of problems in which neither
the artifact objective function nor the artifact constraints
are functions of dc, i.e., fa = fa (da), ga = ga (da), and
ha = ha (da). These problems are said to exhibit uni-
directional coupling. The problems considered in this work
exhibit uni-directional coupling.

A variety of measures have been proposed to quantify
the strength of coupling [Haftka et al. (1986); Bloebaum
(1995); Fathy et al. (2004); Alyaqout et al. (2005)]. These
measures have been shown to be related, though in most
cases they are not commensurate with one another [Pe-
ters et al. (2009); Peters (2010)]. In problems with uni-
directional coupling, one measure which is particularly
useful is the coupling vector, Γv, which is defined as follows
[Fathy et al. (2004)].

Γv =
wc

wa

(
∂fc

∂da
+
∂fc

∂dc

ddc

dda

)
(6)

This vector is valid only at an optimal solution; however,
at a point not known to be optimal, an estimate can be
computed. The equation for the estimated coupling vector,
denoted as Γ̂v, is identical to Eq. (6), but does not require
the solution of Eqs. (1) - (5).

Coupled systems reported in the literature are in diverse
areas including structural systems with active control [e.g.,
Haftka et al. (1986); Rao and Pan (1990)], micro-electrical
mechanical systems, or MEMS [e.g., Carley et al. (2001);
Oldham et al. (2005)], and robotics and mechatronics [e.g.,



Ravichandran et al. (2006); Zhu et al. (2001)]. In robotic
applications, typical objectives for the artifact design are
minimizing weight or minimizing deflection. Controller
objectives may be minimizing tracking errors for a partic-
ular trajectory, overshoot, or settling time [Ouyang et al.
(2002)]. In these problems, speed and accuracy are in
conflict; mechanisms with lower inertia are more flexible,
resulting in a fast response but lower accuracy, while a
higher inertia will produce a stiffer mechanism that is more
accurate but results in lower speeds [Zhu et al. (2001)].
Many applications, however, require both high speed and
high accuracy. Therefore, design of such systems must
consider the coupling between the artifact and control
objectives [Park and Asada (1992)].

It has been shown that a simple sequential optimization,
in which the artifact is first optimized and then the op-
timal control is found for that artifact, does not find the
optimum for the system. Combined optimization methods
such as a simultaneous strategy, in which both the artifact
and control are optimized together, will produce system-
optimal solutions. However, they present disadvantages.
In addition to the computational complexity of the larger
problem, they require the use of more than one discipline
to formulate the full problem. This presents organizational
challenges, since expertise in the various disciplines typi-
cally resides in different individuals, and often in different
groups within an organization. Furthermore, specialized
techniques developed for optimal control can no longer
be used when the problem is not formulated as a purely
optimal control problem.

This paper shows, for the first time, that the use of a
Control Proxy Function (CPF) can provide optimal, or
near-optimal, solutions to the co-design problem without
the disadvantages seen in the combined optimization tech-
niques, and that is the focus of this paper.

2. OPTIMIZATION OF COUPLED SYSTEMS USING
A CONTROL PROXY FUNCTION (CPF)

In order to preserve the functional decomposition of the
co-design problem while realizing optimal or near-optimal
solutions, a modified sequential optimization strategy is
proposed. In this strategy, the original artifact objective
function, fa, is augmented with a Control Proxy Function
(CPF), representing the system’s ease of control, as shown
in Fig. 1. The CPF, denoted as χ, is a function only of the
artifact design variables, da. The optimization problem is
then formulated as follows:

min
da

f ′a (da) = w1fa (da) + w2χ (da) (7)

subject to ga (da) ≤ 0 (8)

ha (da) = 0 (9)

where w1 and w2 are positive weights representing the
relative importance of the artifact objective and the CPF,
followed by the control design problem

min
dc

fc (d∗
a,dc) (10)

subject to gc (d∗
a,dc) ≤ 0 (11)

hc (d∗
a,dc) = 0 (12)

Fig. 1. Control Proxy Function Problem Formulation

where d∗
a = argmin f ′a (da).

The success of the method depends on the selection of an
appropriate CPF. A well-chosen CPF, which effectively
captures the fundamental physical limitations of the sys-
tem, will result in solutions that are close to the Pareto
optimal points found by a simultaneous formulation, while
a poorly chosen CPF will yield solutions far from system
optimality.

The mathematical characteristics of an effective CPF have
been studied, and four theorems describing appropriate
CPFs have been proven [Peters (2010)]. These theorems
are summarized here as follows:

(1) If Γv is parallel to ∇χ at all points, then the CPF
solution set will coincide with the Pareto frontier. A
CPF satisfying this condition is said to be perfect.

(2) CPF solution points will approach the Pareto frontier
as ξ, the angle between the estimate of the coupling
vector Γ̂v and ∇χ in the da-space, approaches zero;
i.e., CPF solution points will be close to the Pareto
frontier when the angle ξ is small.

(3) If the control objective function, fc (da,dc), is mono-
tonic with respect to some element of da, then an
effective CPF, χ (da), will have the same coordinate-
wise monotonicity as fc with respect to that element
of da.

(4) If the control objective function, fc (da,dc), has an
unconstrained minimum in the da-space, then an
effective CPF, χ (da), will obtain its minimum close
to it.

In this paper, Theorem (1) will be particularly useful, as
it can be used to determine under what conditions the
particular CPFs considered will produce optimal solutions.
Theorem (2) will be used to evaluate the solutions when
the CPF method is applied to an example problem.

3. CONTROL PROXY FUNCTIONS FOR SPECIFIC
PROBLEM FORMULATIONS

Given the characteristics of effective CPFs, we can for-
mulate potential CPFs for specific problems and evalu-
ate them. These specific CPFs are based on physically
meaningful system characteristics, specifically the natural
frequency of the system and the controllability Grammian
matrix. The natural frequency is considered as the basis
for a CPF because previous work has shown that, in some
cases, it can be used as an effective proxy for a system’s
ease of control [e.g., Peters et al. (2008); Hale et al. (1985);



Khot and Abhyankar (1993)]. The controllability Gram-
mian matrix, Wc, will be considered as the basis for a
CPF because it has been successfully used for the location
of actuators [e.g., Muller and Weber (1972); Roh and Park
(1997); Lim and Gawronski (1993)]. Furthermore, it has
been shown that, for some problem formulations, there is
a relationship between Wc and the coupling vector Γv

[Peters et al. (2010)]. Since there is also a relationship
between Γv and an effective CPF, as outlined above, this
suggests that a CPF based on Wc will be perfect for some
problems.

3.1 Control Proxy Function Utilizing Natural Frequency

The natural frequency has been successfully used to predis-
pose a system to effective control, suggesting that it can
be used to formulate an effective control proxy function
in some cases. Naturally, the question arises what those
cases might be, and how they can be identified. Here,
three specific problem formulations are presented, derived
in [Peters (2010)], in which natural frequency can be used
in a perfect CPF. Those system characteristics that are
common to all three problems are:

(1) The co-design problem is formulated as in Eq. (1)-(5),
and exhibits uni-directional coupling.

(2) The system is linear and dominated by second-order
dynamics. This system can be described, then, in the
form

mz̈ + bż + kz = u(t) (13)
where m, b, and k are functions of the design variables
da, parameters, and constants, z is the system output,
and u(t) is the forcing function; or alternatively in
state-space form as

ẋ = Ax + Bu (14)
where

A =

[
0 1

− k
m
− b

m

]
(15)

B =

[
0
1
m

]
(16)

x =
[
z
ż

]
(17)

The open-loop system is underdamped, i.e., the open-
loop eigenvalues are complex.

(3) The matrix B is independent of the artifact design
variables da, i.e.,

∂m

∂da
= 0. (18)

(4) A state-feedback controller with gains K, possibly
with a precompensator G, is applied to the system,
as shown in Fig. 2.

(5) There are no active controller equality constraints
hc (da,dc) or strongly active controller inequality
constraints gc (da,dc) present. Weakly active con-
troller inequality constraints may be present, where a
weakly active constraint is one which is not satisfied
as a strict equality but whose removal will affect the
system optimum [Pomrehn and Papalambros (1994)].

Fig. 2. Schematic of System Controller

In a second-order system, there are two eigenvalues, which
are complex conjugates. These eigenvalues can be fully
described by the frequency ω and damping coefficient ζ
of the system.

λ1,2 = −ζω ± ω
√
ζ2 − 1 (19)

The natural frequency of the open-loop system will be
denoted as ωn and the damping coefficient of the open-
loop system as ζn. The frequency of the controlled, or
closed-loop, system will be denoted as ωc and the damping
coefficient of the closed-loop system will be denoted as ζc.
The open-loop and closed-loop frequencies and damping
coefficients for the second-order system subjected to state-
feedback control are given by the following equations
[Franklin et al. (1994)]:

ωn =

√
k

m
(20)

ζn =
b

2
√
mk

(21)

ωc =

√
k +K1

m
(22)

ζc =
b+K2

2
√
m (k +K1)

(23)

These equations will be used to define three specific prob-
lem formulations where χ (da) = χ (ωn) is a perfect CPF.
In each case, additional necessary conditions are specified,
relating to the damping of the system.

Control Objective Independent of Damping: If the
control objective fc is a function of the closed-loop fre-
quency ωc of the system but is independent of the closed-
loop damping coefficient ζc, then the CPF χ = χ (ωn)
will yield system-optimal solutions to the simultaneous
optimization problem. An example of this control objective

is fc = tr, where tr =
1.8
ωc

is the rise time of the system

[Franklin et al. (1994)]. For a second-order system, ωn is
given by Eq. (20), and therefore the gradient of χ is given
by

∇χ =
∂χ

∂ωn

∂ωn

∂da
=

∂χ

∂ωn

(
1
2

√
1
km

∂k

∂da

)
(24)

where k is a function of da. The closed-loop frequency of
the system is given by Eq. (22). Using Eq. (6), the coupling
is found to be

Γv =
w2

w1

∂fc

∂ωc

(
1
2

√
1

(k +K1)m
∂k

∂da

)
(25)

If the CPF is perfect, the vector computed is the coupling
vector Γv, not the estimate Γ̂v. It is possible, then, to
express the coupling vector Γv at the CPF solution as



Γv =
w2

w1

√
k

k +K1

(
∂fc

∂ωc

)
/

(
∂χ

∂ωn

)
∇χ (26)

and it can be seen that the coupling vector at the CPF
point is equal to a scalar quantity multiplied by the gra-
dient of the CPF. From Theorem 1, then, the CPF points
will be Pareto optimal for the co-design problem.

Control Objective Independent of Imaginary Com-
ponent of Eigenvalues: If the control objective fc is
a function of the product ωcζc, i.e., of the real part of
the closed-loop eigenvalues (e.g., fc = ts, where ts is the
settling time of the system), and the damping ratio ζn
of the open-loop system is independent of da, then the
CPF χ = χ (ωn) will yield system-optimal solutions to the
simultaneous optimization problem.

A similar procedure to that given above [Peters (2010)]
can be used to derive a relationship between the coupling
vector and the gradient ∇χ. This relationship is found to
be

Γv =
w2

w1

∂fc

∂ (ωcζc)
b

2
√
km

(
1/

∂χ

∂ωn

)
∇χ (27)

Again, if the CPF is perfect, the vector computed is the
coupling vector Γv, not the estimate Γ̂v. It can then be
seen that the coupling vector at the CPF point is equal to
a scalar multiplied by ∇χ, where ∇χ is given by Eq. (24).
Therefore, from Theorem 1, the CPF points will be Pareto
optimal for the co-design problem.

Damping Term b Independent of da: If the controller
objective fc is an arbitrary function of the closed-loop
eigenvalues of the system, and the damping term b in the
system description is independent of da, i.e.,

∂b

∂da
= 0 (28)

then the CPF χ = χ (ωn) will yield system-optimal
solutions to the simultaneous optimization problem.

Yet again, as shown in [Peters (2010)], a relationship can
be derived between the coupling vector and the gradient
∇χ. This relationship is found to be

Γv =
w2

w1

√
k

k +K1

(
∂fc

∂ωc
− ∂fc

∂ζc

b+K2

2 (k +K1)

)(
1/

∂χ

∂ωn

)
∇χ

(29)
Again, if the CPF is perfect, the vector computed is the
coupling vector Γv, not the estimate Γ̂v. It can be seen
that the coupling vector at the CPF point is equal to a
scalar multiplied by ∇χ, where ∇χ is given by Eq. (24).
Therefore, from Theorem 1, the CPF points will be Pareto
optimal for the co-design problem.

3.2 Control Proxy Function Utilizing the Controllability
Grammian Matrix

A CPF using open-loop eigenvalues will not be effective
when the matrix B is sensitive to the artifact design
variables da, since open-loop eigenvalues cannot be used
to model that system behavior. For problems of this type,
the CPF must be based on some other fundamental metric
of the system which is capable of modeling both the free
and forced response characteristics of the system. Since the

controllability Grammian matrix Wc incorporates both
the free and forced response characteristics of a system,
it is logical to consider its use in a CPF. Here, we will
demonstrate that the controllability Grammian can be
used to formulate a CPF in some cases. Additional cases in
which the controllability Grammian can be used are given
in [Peters (2010)].

In the development of the CPF based on the controllability
Grammian, it is assumed that the system dynamics are lin-
ear and time-invariant, and can be described in state-space
form, i.e., by Eq. (14). The system may be of arbitrarily
high order. For this system, the controllability Grammian
matrix is given by [Skogestad and Postlethwaite (2005)]

Wc (tf ) =
∫ tf

0

eAtBBT eAT tdt (30)

The CPF that will be considered is:
χ = xT

f W−1
c (tf ) xf (31)

where xf is the final state of the system, and tf is the
time at which it reaches that state.

Control Effort as Control Objective Function: The
CPF given by Eq. (31) will produce optimal solutions when
the control objective function, fc, is the control effort
necessary to move the system from its zero state to its
final state, xf , at a specified final time, tf , where tf is a
parameter. The final state, xf , may be a parameter or it
can be a function of the artifact design variables, da. An
example would be a positioning device in an automated
assembly system; parts to be assembled typically must be
placed at their destination at a particular time.

The objective function, fc, is given by

fc =
∫ tf

0

(u (t))2 dt. (32)

The controllability Grammian matrix can be used to
construct a lower bounding function for the control effort,
which is given by [Skogestad and Postlethwaite (2005)]

fc ≥ xT
f W−1

c (tf ) xf (33)
If an optimal controller is used, then the optimal value of
fc is given by

f∗c = xT
f W−1

c (tf ) xf , (34)
and it is evident that the solutions found using this CPF
will be optimal since χ = fc. Furthermore, it has been
shown that, for this problem,

Γv =
wc

wa

∂

∂da

(
xT

f W−1
c (tf ) xf

)
, (35)

and thus Theorem (1) confirms that the CPF given in Eq.
(31) will produce optimal solutions.

Time as Control Objective Function and Control
Effort as Constraint: The CPF given by Eq. (31)
will produce optimal solutions when the control objective
function is the time, tf , necessary to move the system from
its zero state to a final state, xf , subject to a limit on the
available control energy, Emax, where Emax is a parameter.
Again, xf may be a parameter or a function of da.

The objective function, fc, and constraint, gc, are given by



Fig. 3. Configuration of Positioning Gantry System

fc = tf (36)

gc =
∫ tf

0

(u (t))2 dt− Emax ≤ 0 (37)

The coupling vector for this problem is parallel to that for
the problem where control effort is the objective function.
Therefore, the coupling vector for this problem will also
be parallel to ∇χ, where χ is given by Eq. (31). Using
Theorem (1), it can be seen that the use of this CPF will
result in optimal solutions.

4. ILLUSTRATIVE EXAMPLE: POSITIONING
GANTRY SYSTEM

4.1 Configuration of Positioning Gantry

Consider the system shown in Fig. 3, representing a simple
model of a positioning gantry. In this system, a mass M
is connected to a fixed surface by a linear spring with
constant ks. A flexible belt connects to the mass and
wraps around a pulley with radius r, which is mounted
on a DC motor with armature resistance Ra and motor
constant kt. The displacement of the mass from its original
position is Z. The system can be modeled in the form

of Eqs. (13) - (17), where m =
MrRa

kt
, b =

kt

r
, and

k =
ksrRa

kt
. A state-feedback controller with gains K =

[K1 K2] and precompensator G is applied to the system,
as shown in Fig. 2, to generate the input voltage u to
the motor. The steady-state voltage is denoted as uss.
Values of parameters are given Ra = 2 kΩ, M = 2 kg,
and uss = 10 V.

4.2 Optimization Problem Formulation

The following objectives and constraints are selected:
fa (kt, r, ks) = −Zf (38)

subject to simple bounds on the artifact design variables:

2.5 ≤ r ≤ 7.5 (39)

5 ≤ kt ≤ 20 (40)

0.5 ≤ ks ≤ 2.0 (41)
where the final displacement Zf represents the peak dis-
placement, with a 10% overshoot over the steady-state
displacement, Zss.

Zf = 1.1Zss =
1.1usskt

rRaks
(42)

The controller objective is

fc (kt, r, ks,K1,K2, G) =
∫ tf

0

(u (t))2 dt (43)

The optimization problem is formulated as in Eqs. (7)-

(12), using the CPF given by Eq. (31), where xf =
[
Zf

0

]
.

Since this problem satisfies the conditions set on the
derivation of this CPF in Section 3, it is expected that
the solutions found will be system-optimal.

4.3 Optimization Results

This problem was solved using Matlab’s fmincon function
for a variety of weights w1 and w2, producing the results
shown in Fig. 4. For each point, ∇χ and Γ̂v were calcu-
lated. Using these vectors, the angle ξ was calculated, and
it was found that ξ = 0 for all points. Thus, based on
Theorem (2), it is known that these solutions are system-
optimal. Note that this was determined without the need
to solve the simultaneous problem in Eqs. (1) - (5).

Fig. 4. Results of Positioning Gantry Optimization

5. CONCLUDING REMARKS

In this paper, a new method of solution for co-design
problems, based upon a sequential optimization using a
Control Proxy Function (CPF) is presented. The intent
of the CPF method is to provide solutions that are
identical with, or close to, the Pareto optimal solutions
to the co-design problem, while allowing the problem to
be decomposed into an artifact design problem and a
control design problem. This decomposition allows the co-
design problem to be more easily formulated and solved
by experts in each of the functional areas of artifact
design and control design. The key to the effectiveness
of this method is the choice of an appropriate CPF, and
we have proposed appropriate CPFs for specific problem
formulations. These CPFs are based on the system’s
natural frequency and on the controllability Grammian
matrix. In the case of both CPFs, we have assumed that
the system of interest is linear and time-invariant. For
a CPF based on natural frequency, the system was also
assumed to be second-order, though the CPF based on the
controllability Grammian applies to systems of arbitrarily



high order. One of these CPFs, based on the controllability
Grammian, was used in the optimization of a simple
positioning gantry and its controller, and was shown to
provide optimal solutions.

These CPFs are not exhaustive; it is possible to formulate
and evaluate additional CPFs, based on open-loop eigen-
values, the controllability Grammian, and possibly other
system metrics, and the development of such CPFs should
be the subject of future work. These CPFs could be used
to produce optimal solutions for a variety of problems
not considered here, such as Linear Quadratic Gaussian
(LQG) control, vehicle steering applications, trajectory
control, sensor placement, and power management. In
some cases, it may not be possible to develop a simple CPF
that provides optimal results. However, one can conjecture
that a CPF based on the controllability and observability
Grammians will produce results that are near-optimal for
a variety of problems, since they provide measures of how
easily a system is controlled and how easily the states are
estimated. This conjecture should also be investigated in
future work, and it should be determined how effective a
CPF based on the controllability and observability Gram-
mians will be for various types of co-design problems.
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