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Control Proxy Functions for
Sequential Design and Control
Optimization
Optimal system design of “smart” products requires optimization of both the artifact and
its controller. When the artifact and the controller designs are independent, the system
solution is straightforward through sequential optimization. When the designs are
coupled, combined simultaneous optimization can produce system-optimal results, but
presents significant computational and organizational complexity. This paper presents a
method that produces results comparable with those found with a simultaneous solution
strategy, but with the simplicity of the sequential strategy. The artifact objective function
is augmented by a control proxy function (CPF), representing the artifact’s ease of con-
trol. The key to successful use of this method is the selection of an appropriate CPF.
Four theorems that govern the choice and evaluation of a CPF are given. Each theorem
is illustrated using a simple mathematical example. Specific CPFs are then presented for
particular problem formulations, and the method is applied to the optimal design and
control of a micro-electrical mechanical system actuator. [DOI: 10.1115/1.4004792]
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1 Introduction

Optimal design of “smart” products and systems requires opti-
mization of both the physical system or artifact, and its controller.
This codesign problem can present challenges when the design of
artifact and controller is dependent on each other. In general, the
artifact objective function, fa, and inequality and equality con-
straints, ga and ha, may all be functions of both artifact and con-
trol variables, da and dc, respectively. Likewise, the control
objective function, fc, and inequality and equality constraints, gc

and hc, may all be functions of both da and dc; i.e., fa¼ fa(da, dc),
ga¼ ga(da, dc), ha¼ ha(da, dc), fc¼ fc(da, dc), gc¼ gc(da, dc), and
hc¼ hc(da, dc). When this interdependence exists, the solution of
the bi-objective optimization problem given by Eqs.(1)–(5) is a Par-
eto set, with the various Pareto points found by varying the weights
wa and wc, where wa, wc> 0, and the problem is said to be coupled.

min
da;dc

wafa þ wcfc (1)

subject to ga � 0 (2)

ha ¼ 0 (3)

gc � 0 (4)

hc ¼ 0 (5)

Many such coupled systems have been reported in the literature.
These include structural systems with active control (e.g., Refs.
[1–3]), micro-electrical mechanical systems (MEMS, e.g., Refs.
[4, 5]), and robotics and mechatronics (e.g., Refs. [6–8]). The
experimental and analytical studies have shown that coupling
must be considered and addressed and that doing so can present
significant challenges (e.g., Refs. [9–12]).

When all of the objective and constraint functions depend on
both da and dc, coupling is described as bi-directional. However,
there are many engineering problems in which the artifact objec-
tive and constraints are not functions of dc, i.e., fa¼ fa(da),
ga¼ ga(da), and ha¼ha(da). Such problems include many struc-

tures subject to active control (e.g., Ref. [13]); other such systems
exists, including an elevator with gain-scheduled control [14].
Coupling in these problems is described as unidirectional. In the
present work, only unidirectional coupling is considered.

A variety of measures have been proposed to quantify the
strength of coupling [1,15–17]. These measures have been shown
to be related, though most are not commensurate with one another
[18,19]. In problems with unidirectional coupling, a useful mea-
sure is the coupling vector, Cv, which will be used in this work,
and is defined as Refs. [16, 20, 21]:

Cv ¼
wc

wa

@fc

@da
þ @fc
@dc

@dc

@da

� �
(6)

This vector is valid only at an optimal solution; however, if a
point is not known to be an optimal solution, an estimate can be
computed. The equation for the estimated coupling vector,
denoted as bCv, is identical to Eq. (6), but does not require the solu-
tion of Eqs. (1)–(5). Of course, if the point does happen to be on
the Pareto frontier, then bCv ¼ Cv.

It has been shown that simple sequential optimization, in which
the artifact is first optimized and then the optimal control is found
for that artifact, does not necessarily find system-optimal solutions
[21,22]. Combined optimization methods such as a simultaneous
strategy, in which both the artifact and the control are optimized
together, will produce system-optimal solutions [21,22]. These
methods require combining expertise from more than one disci-
pline to formulate and solve the full optimization problem. This
presents organizational challenges, since such expertise is typi-
cally found in different individuals or different groups within an
organization. Furthermore, specialized techniques developed for
optimal control can no longer be used when the problem is not
formulated as a purely optimal control one. The combined solu-
tion presents also a computational challenge.

In this paper, the new concept of a control proxy function
(CPF) is introduced. A combined problem including the CPF and
the artifact objective function is formulated, followed by the opti-
mization of the control problem. This allows an effective sequen-
tial solution strategy to be implemented for the combined
problem. The CPF concept is introduced in Sec. 2. In Sec. 3, four
theorems are presented governing the choice and the evaluation of
appropriate CPFs, and simple mathematical examples are used to
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demonstrate the concepts. In Sec. 4, the use of a CPF is shown to
provide optimal or near-optimal solutions to the codesign problem
without the disadvantages seen in the combined optimization tech-
niques. A set of CPFs are derived for the specific problem formu-
lations. In Sec. 5, the method is demonstrated on a MEMS
actuator, and Sec. 6 presents concluding remarks.

2 Control Proxy Function Problem Formulation

In order to preserve the functional decomposition of the code-
sign problem while realizing optimal or near-optimal solutions, a
modified sequential optimization strategy is proposed. In this
strategy, the original artifact objective function, fa, is augmented
with a CPF, representing the system’s ease of control. The CPF,
denoted as v, is a function of only the artifact design variables da;
it is independent of the control design variables dc and of the con-
trol architecture itself. The bi-objective artifact design problem
with the two functions fa(da) and v(da) may be solved in a variety
of ways, as discussed in the multi-objective optimization literature
(e.g., Refs. [23–26]). In this paper, a simple weighted linear com-
bination will be used to demonstrate the proposed method. The
optimization problem is then formulated as follows, see Fig. 1:

min
da

w1fa dað Þ þ w2v dað Þ (7)

subject to ga dað Þ � 0 (8)

ha dað Þ ¼ 0 (9)

where the positive weights w1 and w2 represent the relative impor-
tance of the artifact objective and the CPF. This is followed by the
control design problem:

min
dc

fc d�a; dc

� �
(10)

subject to gc d�a; dc

� �
� 0 (11)

hc d�a; dc

� �
¼ 0 (12)

where d�a ¼ argmin w1fa dað Þþ w2v dað Þð Þ subject to ga(da) � 0,
ha(da)¼ 0 is the solution to Eqs. (7)–(9).

The success of the method, in terms of reproducing the results
of the simultaneous formulation of Eqs. (1)–(5), depends on the
selection of an appropriate CPF. A well-chosen CPF, which effec-
tively captures the fundamental physical limitations that deter-
mine the attainable control performance of the system, will result
in solutions close to the Pareto-optimal points found by a simulta-

neous formulation; a poorly chosen CPF will yield solutions far
from system optimality. The question then arises of how one
should choose an appropriate CPF, and how one may evaluate a
proposed CPF to determine whether it results in optimal or near-
optimal solutions. Of course, the closeness of the CPF solution
should be determined without solving the simultaneous formula-
tion in Eqs. (1)–(5) for Pareto optimal points, since the motivation
for the CPF formulation is to eliminate the need to solve the
simultaneous problem.

3 Characteristics of Effective Control Proxy

Functions

Four theorems are presented that govern the characteristics of
an appropriate CPF. First, a “perfect” CPF is defined, and a condi-
tion which ensures that a CPF is perfect is given as Theorem 1.
Next, for a CPF that is not perfect, a measure of its “closeness” to
the Pareto frontier is defined and characterized in Theorem 2.
Finally, Theorems 3 and 4 relate an effective CPF to the mathe-
matical form of the control objective function, fc. For Theorems 2
through 4, it is assumed that all functions are locally convex.

3.1 Characterization of a Perfect CPF. A CPF is described
as perfect if every solution of the CPF problem is also a solution
to the simultaneous problem given in Eqs. (1)–(5), i.e., every CPF
point will coincide with the Pareto frontier. Such points satisfy the
condition given in Theorem 1.

Theorem 1. If Cv k rv for all solutions to the CPF problem
given in Eqs. (7)–(9), then all solutions to the CPF problem will
also be solutions to the simultaneous problem given in Eq. (1)–(5).

Proof. For the simultaneous problem stated in Eqs. (1)–(5), the
Karush-Kuhn-Tucker (KKT) conditions [27] can be stated as

@fa
@da
þ wc

wa

@fc

@da
þ @fc

@dc

@dc

@da

� �
wc

wa

@fc
@dc

2664
3775þ kT

@ha

@da

@hc
@dc

264
375

þ lT

@ga
@da

@gc
@dc

264
375 ¼ 0 (13)

lT ga

gc

� �
¼ 0; k 6¼ 0; l � 0 (14)

and, for the CPF problem stated in Eqs. (7)–(12), the KKT condi-
tions are

@fa

@da
þ w2

w1

@v
@da

w2

w1

@fc
@dc

2664
3775þ kT

@ha

@da
@hc

@dc

2664
3775þ lT

@ga

@da
@gc

@dc

2664
3775 ¼ 0 (15)

lT ga

gc

� �
¼ 0; k 6¼ 0; l � 0 (16)

Assume that, for every set of weights wa and Wc, there exists
some set of weights w1 and w2 such that the two formulations will
have identical solutions. Then it can be shown that

@fa

@da
þ Cv ¼

@fa

@da
þ w2

w1

@v
@da

(17)

and, consequently, that

Cv ¼
w2

w1

rv (18)

Such a set of weights will exist and the modified sequential prob-
lem will produce the Pareto-optimal solutions when the gradientFig. 1 Control proxy function problem formulation
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of the CPF, rv, is parallel to the coupling vector Cv. Thus, the
theorem is proven. h

Example. To illustrate the relationship between Cv andrv, con-
sider the following coupled optimization problem:

min wa fa dað Þ þ wc fc da; dcð Þ (19)

subject to ga dað Þ ¼ 4d2
a1
þ d2

a2
� 900 � 0 (20)

where

fa ¼ 0:5d2
a1
þ d2

a2
� da1

da2
� 7da1

� 7da2
(21)

fc ¼ da1
� da2

ð Þ2 þ 1

9
da1
þ da2

þ dc � 10ð Þ2 þ dc � 5ð Þ2 (22)

The CPF

v dað Þ ¼ 11d2
a1
þ 11d2

a2
� 18da1

da2
� 10da1

� 10da2
þ 25 (23)

is chosen, and the system is optimized both sequentially and
simultaneously.

The coupling vector Cv is given by the relation

Cv ¼
2wc

9wa

10d�a1
� 8d�a2

þ d�c � 10

�8d�a1
þ 10d�a2

þ d�c � 10

� �T

(24)

where d�a1
, d�a2

, and d�c are values of these variables evaluated at an
optimal solution. The CPF has the gradient

rv ¼ 22da1
� 18da2

� 10

�18da1
þ 22da2

� 10

� �T

(25)

Since there are no controller constraints gc(da, dc) or hc(da, dc),
@fc=@dc ¼ 0 at an optimal solution, and therefore

d�c ¼ 5:5� 0:1d�a1
� 0:1d�a2

(26)

Substituting into Eq. (24)

Cv ¼
2wc

wa

1:1d�a1
� 0:9d�a2

� 0:5
�0:9d�a1

þ 1:1d�a2
� 0:5

� �T

(27)

Comparing Eqs. (25) and (27) at an optimal solution to the simul-
taneous problem, it can be seen that Cv ¼ 10wc

wa
rv; therefore, the

use of this CPF will duplicate the Pareto frontier.

3.2 Quantification of the “Closeness” of a CPF Point to
the Pareto Frontier. As stated above, a perfect CPF is character-
ized by rv k Cv, i.e., when the angle n between the vectors rv
and Cv is zero. This suggests that the angle n may serve as a
means of evaluating the fidelity of a given CPF in modeling the
behavior of fc. The theorem specifies that no artifact constraints
are active. However, since constraints reduce the degrees of free-
dom of a system, it is conjectured that if the problem is convex
and the point in question is near the Pareto frontier, the angle n
will represent an upper bound on the “distance” between a CPF
point and the Pareto frontier when constraints are active.

Theorem 2. If a codesign problem, as given in Eqs. (1)–(5), is con-
vex and no artifact constraints ga(da), ha(da) are active, then the angle
n between rv and the estimated coupling vector bCv at a CPF point
will be monotonically related to �, the distance between that CPF
point and the nearest Pareto optimal point, measured in the da-space.

Proof. The distance from optimality has been defined in several
ways [28]; here, it is defined as the distance between a given
point, da, and the nearest Pareto-optimal point, d�a, in the da-space

e ¼ da � d�a
�� ��

2
(28)

where da is the vector of design variables and d�a denotes the vec-
tor of design variables at an optimal solution to the codesign
problem.

Since it has been specified that coupling is unidirectional, it is
possible to express the optimal control design variables dc as a
function of the artifact design variables as follows:

d�c ¼ dc d�a
� �

(29)

which allows the control objective fc to be transformed into a
function of only da. This shall be used later in the proof in order
to find gradients of fc in the da-space. It is possible to incorporate
any active controller constraints gc(da, dc), hc(da, dc) into Eq. (29).

This codesign problem is also formulated as the CPF problem

min
da

w1 fa dað Þ þ w2v dað Þ (30)

followed by

min
dc

fc dcð Þ (31)

subject to gc dcð Þ � 0 (32)

hc dcð Þ ¼ 0 (33)

The functions v(da), fa(da) and the reduced-space function fc(da)
are all assumed to be convex functions. Consider a point A which
solves the CPF problem. At this point, with da ¼ dA

a

w1rf A
a ¼ �w2rvA (34)

The point B is chosen such that it is the nearest Pareto-optimal so-
lution to point A. Its location in the artifact design variable space,
therefore, satisfies the relation dA

a ¼ dB
a þ ev, where v is a unit

vector normal to rf B
a and e is the distance between A and B, as

shown in Fig. 2.
Using a Taylor series expansion of about B, the artifact and the

controller objective functions at A can be expressed as

f A
a ¼ f B

a þrf B
a evþ 1

2
e2vTr2f B

a vþ higher order terms (35)

f A
c ¼ f B

c þrf B
c evþ 1

2
e2vTr2f B

c vþ higher order terms (36)

Fig. 2 Gradients at Points A and B
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and, therefore, neglecting higher-order terms, the gradients of fa
and fc at A can be expressed in terms of the gradients at B as

rf A
a ¼ rf B

a þ evTr2f B
a (37)

rf A
c ¼ rf B

c þ evTr2f B
c (38)

The estimate of the coupling vector, computed from Eq. (6), is
given by

ĈA
v ¼

w2

w1

rf A
c (39)

and the angle n can be found from the relation

cos n ¼ CA
v � rvA

CA
v

�� �� rvAk k
¼ rf A

c � rvA

rf A
c

�� �� rvAk k
(40)

From optimality conditions, it is known that

warf B
a ¼ �wcrf B

c (41)

w1rf A
a ¼ �w2rvA (42)

Using Eq. (42), it is possible to rewrite Eq. (40) as

cos n ¼ �rf A
c � rf A

a

rf A
c

�� �� rf A
a

�� �� (43)

By following the mathematical procedure detailed in Ref. [19], it
can be shown that

cos2n r2f BT

a v� 1

e
wc

wa
rf BT

c

� �
vTr2f B

c v
� �

¼ r2f BT

a v� 1

e
rf BT

c

� �
vTr2f B

c v
� �

(44)

Since the functions have been specified as convex, vTr2f B
c v � 0

and vTr2fc
Bv � 0. As the value of � increases, it is evident that

cos2n must decrease, and, therefore, n is increasing. Given that n
has the same monotonicity as e, the angle n is an appropriate mea-
sure of the distance between a CPF solution and the unknown Par-
eto frontier, and the theorem is proven. h

Example. Consider the following problem:

min wafa dað Þ þ wcfc da; dcð Þ (45)

where

fa ¼ 0:5d2
a1
þ d2

a2
� da1

da2
� 7da1

� 7da2
(46)

fc ¼ da1
� da2

ð Þ2 þ 1

9
da1
þ da2

þ dc � 10ð Þ2 þ dc � 5ð Þ2 (47)

A CPF of

v1 dað Þ ¼ da1
� 5ð Þ2 þ d2

a2
� 25 (48)

is chosen, and the system is optimized both sequentially and
simultaneously. The angle n is compared with the distance � to the
nearest point on the true Pareto frontier in Fig. 3, and it can be
seen that, for this example, this angle is an effective measure of
the distance to the frontier. Using this measure, the accuracy of a
CPF can be evaluated without knowing the true Pareto frontier.

3.3 Monotonicity of Controller Objective and CPF. A
function is said to be coordinate-wise monotonic if it is either

always increasing or always decreasing with respect to a given
variable, e.g., if the partial derivative of a continuous function
does not change sign [28]. Monotonicity analysis is a useful tool
in optimization problems. For example, it can be used to deter-
mine constraint activity, to study the behavior of composite func-
tions, and to give insight into the tradeoffs present in optimization
problems [28]. Here, monotonicity is used to characterize effec-
tive CPFs.

If a controller objective fc(da, dc) is monotonic with respect to
an element of da, then it seems appropriate that v(da) should have
the same monotonicity with respect to that element of da in order
to effectively model the behavior of fc.

Theorem 3. If fc(da, dc) is monotonic with respect to some ele-
ment of da, and that element of da does not appear in any active
constraint, then a CPF with the same monotonicity will produce
solutions closer to the optimum than a CPF with the opposite
monotonicity.

Proof. Assume that, in a codesign problem, the controller
objective function fc(da, dc) is monotonic with respect to the jth
component of the n-dimensional vector of artifact design variables
da. Two CPFs will be used to solve this problem, denoted as
v1(da) and v2(da). The two CPFs are selected such that they have
opposite monotonicity with respect to the jth component of da,
i.e., one CPF is increasing with respect to daj

, while the other is
decreasing with respect to daj

[28]. Mathematically, this can be
stated as follows:

@v1

@dai

¼ @v2

@dai

8 fi : i 6¼ j; 1 � i � ng (49)

@v1

@daj

¼ � @v2

@daj

(50)

sgn
@v1

@daj

 !
¼ sgn

@fc

@daj

 !
(51)

Let the point A in the da-space be a solution to the CPF problem
using v1(da), and let point B in the da-space be the Pareto optimal
solution to the codesign problem that is nearest to point A.
Assume that, at point B, daj

does not appear in any active control-
ler constraints gc(da, dc) or hc(da, dc). Choose point C such that it
is a solution to the CPF problem using v2(da) and such that point
B is the Pareto-optimal point nearest to it, as shown in Fig. 4.

If the distances from point B to points A and C, denoted as eA

and eC, respectively, are sufficiently small, then the functions fc,
v1, and v2 can each be represented by first-order Taylor series
approximations. Expanding about B,

f A
c ¼ f B

c þ eArf B
c v1 (52)

Fig. 3 Comparison of angle n and distance e
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f C
c ¼ f B

c þ eCrf B
c v2 (53)

vA
1 ¼ vB

1 þ eArvB
1 v1 (54)

vC
2 ¼ vB

2 þ eCrvB
2 v1 (55)

where v1 and v2 are unit vectors such that v2¼6v1.
By taking gradients of Eqs. (52) and (53), it can be stated that

rf A
c ¼ rf B

c (56)

rf C
c ¼ rf B

c (57)

The coupling vector estimates at A and C are given by

bCA
v ¼

wA
2

wA
1

rf A
c (58)

bCC
v ¼

wC
2

wC
1

rf A
c (59)

where wA
1 and wA

2 are the weights which produce point A, and wC
1

and wC
2 are the weights which produce point C. Substituting Eqs.

(56) and (57) into Eqs. (58) and (59)

bCA
v ¼

wA
2

wA
1

rf B
c (60)

bCC
v ¼

wC
2

wC
1

rf B
c (61)

The gradients rvA
1 and rvC

2 are given by the relations

rvA
1 ¼ rvB

1 (62)

rvC
2 ¼ rvB

2 (63)

Using Eqs. (58)–(63), n can be found for A and C

cos nA ¼
bCA

v � rvA
1bCA

v

��� ��� rvA
1

�� �� (64)

cos nC ¼
bCC

v � rvA
2bCC

v

��� ��� rvC
2

�� �� (65)

Substituting into Eqs. (64) and (65), it is possible to relate nA and
nC, as shown in Ref. [19], and to show that cos nA> cos nC, leading

to the conclusion that nA< nC. Therefore, from Theorem 2, it can
be stated that v1(da) will produce solutions closer to the Pareto opti-
mal points than v2(da) will. Since v1(da) shares the same monoto-
nicity as fc(da, dc), the theorem is proven. h

Example. Consider the following problem:

min wafa dað Þ þ wcfc da; dcð Þ (66)

subject to ga dað Þ ¼ 10� da1
� da2

� 0 (67)

gc da; dcð Þ ¼ da2
� dc

2

� �2

� 25 � 0 (68)

where

fa ¼ 0:5d2
a1
þ d2

a2
� da1

da2
� 7da1

� 7da2
(69)

fc ¼ da1
þ da2

� dc (70)

and da¼ {da : da � 0}.
A CPF of

v1 dað Þ ¼ da1
þ 0:25d0:5

a2
(71)

is chosen. It is evident that fc and v are both monotonically
increasing with respect to da1

and da2
. Solving both the simultane-

ous optimization and the CPF problem, it can be seen in Fig. 5
that the CPF solution models the tradeoff between fa and fc,
though imperfectly.

In contrast, consider a CPF of

v2 dað Þ ¼ �da1
þ 0:25d0:5

a2
(72)

In this case, the monotonicities of v and fc with respect to da1
do

not match. Solving the new CPF problem, it can be seen in Fig. 5
that this CPF does not model the tradeoff between fa and fc.

3.4 Locations of Unconstrained Minima of fc and v. In
Sec. 3.3, fc was assumed to be monotonic with respect to some
element of da. Here, the case where fc is not monotonic, but rather
has an unconstrained minimum, is considered. Intuitively, it
seems to be likely that the values taken by da at the minimum of
fc should also minimize v, and that a CPF will become less effec-
tive if the minimum of v is farther from the minimum of fc in the
da-space. This can be proven for an unconstrained problem, and
it is conjectured that it will also be true for constrained problems.

Fig. 4 Pareto-optimal Point B and CPF Points A and C

Fig. 5 Comparison of simultaneous and CPF solutions for
appropriate and inappropriate monotonicity
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Theorem 4. Assume that fc(da, dc) has an unconstrained mini-
mum, and that v(da) is chosen such that it has an unconstrained
minimum. Then, the distance between a CPF point and the Pareto
frontier will increase as the distance increases between the min-
ima of fc and v.

Proof. Assume that in a codesign problem the control objective
function fc(da, dc) has an unconstrained minimum in the da-space,
denoted as point D. The CPF v(da) is chosen such that it has an
unconstrained minimum in the da-space. The minimum of v(da),
denoted as point C, is located at a distance d from point D, as
shown in Fig. 6.

Let point A be a solution to the CPF problem using v(da). The
distance from point D to point A is denoted as r, and the distance
from point C to point A is denoted as b. The vectors n, r, and s in
Fig. 6 are unit vectors.

The function fc evaluated at point A shall be represented by a
second-order Taylor series expansion about its minimum, point D,
as follows:

f A
c ¼ f D

c þ
1

2
r2sTr2f D

c s (73)

The function v evaluated at point A shall be represented by a sec-
ond-order Taylor series expansion about its minimum, point C, as
follows:

vA ¼ vC þ 1

2
b2rTr2vCr (74)

It is then possible to find the gradients of fc and v, evaluated at
point A, in the da-space.

rf A
c ¼ rsTr2f D

c (75)

rvA ¼ brTr2vC (76)

The unit vector r can be expressed as r ¼ 1
b rs� dnð Þ, and, there-

fore, Eq. (76) can be rewritten as

rvA ¼ rs� dnð ÞTr2vC (77)

From Eq. (40), it is known that

cos nA ¼ rvA � rf A
c

rvAk k rf A
c

�� �� (78)

The unit vector s can be expressed in terms of the unit vector n by
means of a rotation matrix, R, as s¼Rn; substituting this relation
and Eqs. (75) and (76). Following the mathematical steps given in
Ref. [19], it is possible to establish the monotonicity of cos nA

with respect to d. It can be shown that, regardless of the value of
d, an increase in d will always result in a decrease in cos nA; thus,
we see that an increase in the distance d between the minima of fc
and v will result in an increase in the angle nA. From Theorem 2,
it can be stated that an increase in d will result in CPF solutions
that are farther from the Pareto-optimal solutions to the codesign
problem, and thus, the theorem is proven. h

Example. Consider the following problem:

min wafa dað Þ þ wcfc da; dcð Þ (79)

subject to ga dað Þ ¼ 4d2
a1
þ d2

a2
� 900 � 0 (80)

gc da; dcð Þ ¼ 1

50
d2

a1
þ 1

5
d2

a2
� 48 � 0 (81)

where

fa ¼ 0:5d2
a1
þ d2

a2
� da1

da2
� 7da1

� 7da2
(82)

fc ¼ da1
� da2

ð Þ2 þ 1

9
da1
þ da2

þ dc � 10ð Þ2 þ dc � 5ð Þ2 (83)

This problem is solved twice, with two different CPFs, which are
then compared

v1 dað Þ ¼ da1
� 5ð Þ2 þ d2

a2
� 25 (84)

v2 dað Þ ¼ da1
� 1ð Þ2 þ da2

þ 10ð Þ2 � 10 (85)

The unconstrained minima of the functions fa, fc, v1, and v2 are
given in Table 1. The minimum of v1 is located at a distance of
3.54 from the minimum of fc, significantly closer than the mini-
mum of v2, which is located at a distance of 12.59 from the mini-
mum of fc. The solutions found by solving the two CPF sequential
problems are shown in Fig. 7. It can be seen that v1, which obtains
its minimum closer to that of fc than does v2, produces a closer
match to the simultaneous solution than v2.

It is important to note that, in the case of Theorem 1, no assump-
tions were made about the functional forms of fa, fc, or v. For Theo-
rems 2 through 4, the functions were assumed to be convex in the
region of interest. This assumption allowed higher-order terms to
be neglected without changing the sign of the Taylor series expan-
sion. If a function was nonconvex, then the results of Theorems 2
through 4 would not necessarily be applicable.

4 Control Proxy Functions for Specific Codesign

Problem Formulations

In Sec. 3, the characteristics of effective CPFs have been
shown. The four theorems presented were based purely on the
mathematics of the functions involved in the problem, with no
consideration for what they might physically represent or what
specific problems could be formulated. Here, specific codesign
problem formulations are considered, and the types of CPFs that
may apply to those problems are studied.

Previous work has shown that, in some cases, the natural fre-
quency of a system can be used as an effective proxy for that

Fig. 6 Unconstrained minima of fc and v

Table 1 Comparison of minima of objective functions and con-
trol proxy functions

fa fc v1 v2

da1
21 2.5 5 1

da2
14 2.5 0 �10
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system’s ease of control (e.g., Refs. [29–33]), and the natural fre-
quency has been successfully used in many structural problems, in
which minimizing vibration is critical. Furthermore, it has been
demonstrated that, in certain cases, a CPF based on natural fre-
quency is guaranteed to produce the system-optimal results [34].
Such a CPF is not always effective, however; in particular, when
the system’s response to a forcing function is sensitive to the arti-
fact design variables, a CPF based on natural frequency will not
be effective since it does not capture this behavior. Therefore,
additional CPFs are necessary to cover a wide range of problems
of interest. Here, the controllability Grammian matrix, Wc, will be
considered as the basis for a CPF. Previous work has shown that,
for some problem formulations, there is a relationship between Wc

and the coupling vector Cv [35]. Since there is also a relationship
between Cv and an effective CPF, this suggests that a CPF based
on Wc will be effective for some problems.

This section will examine situations in which a CPF based on
either the time-dependent controllability Grammian matrix, Wc(tf)
or the steady-state controllability Grammian matrix, Wc

1, is per-
fect. In all cases, it is assumed that the codesign problem is formu-
lated as in Eqs. (1)–(5), and that the system dynamics are linear
and can be described in state-space form, i.e., _x ¼ Axþ Bu,
where A describes the system’s free response, B characterizes the
system’s response to a forcing function, u is the control input, and
x is the vector of system states.

4.1 Control Proxy Function for the Case of Control Effort
as Objective. Consider the case in which the control objective is
to minimize control effort, defined as

fc ¼
ðtf

0

u tð Þð Þ2dt (86)

It is known from control theory that there exists a minimum possi-
ble value for the control effort, regardless of the controller archi-
tecture chosen, and that this limit is dependent on the
controllability Grammian matrix, Wc [36]. Therefore, if an opti-
mal controller is chosen, then the control objective function fc will
be given by

fc ¼ xT
f W�1

c xf (87)

This expression for fc depends only on da and thus could serve as
a CPF. It has been shown that the coupling vector Cv is related to
Wc [35], and for the control objective in Eq. (87) is given by

C v ¼
wc

wa

xT
f

@W�1
c

@da1

xf þ 2xT
f W�1

c

@xf

@da1

xT
f

@W�1
c

@da2

xf þ 2xT
f W�1

c

@xf

@da2

..

.

xT
f

@W�1
c

@dan

xf þ 2xT
f W�1

c

@xf

@dan

26666666664

37777777775

T

(88)

For v dað Þ ¼ xT
f Wc

�1xf , Cv ¼ wc

wa
rv, and thus, the CPF is perfect.

There are situations, however, when a simpler CPF would suffice.
Consider the case where the final state of the system, xf, is a parameter.
One might expect that when this is the case, a CPF based only on Wc

may be effective, and in some situations this is true, as shown below.
Consider a situation in which the parameter xf has as its only

nonzero component the jth element, i.e., xfj 6¼ 0, xfq ¼ 0 8 q 6¼ j;
this situation corresponds to problems, e.g., in which a system is
to be moved to a final location where it is at rest. A CPF of

v ¼ W�1
cjj

tf

� �
¼

W�cjj
tf

� �
det Wcð Þ (89)

is chosen, where W�c tf

� �
is the adjoint matrix of Wc(tf), and W�cjj

tf

� �
is

the (jj)th element of W�c tf
� �

. Note that, if the (jj)th element of Wc
� tf
� �

is not a function of da, then this is equivalent to maximizing the deter-
minant of Wc tf

� �
. It will be shown here that this is a perfect CPF.

The gradient of Eq. (89) is given by

rv ¼
@W�1

cjj
tf
� �

@da1

;
@W�1

cjj
tf
� �

@da2

;…;
@W�1

cjj
tf
� �

@dan

" #
(90)

The coupling vector Cv is found from Eq. (88)

Cv ¼
wc

wa
x2

fj

@W�1
cjj

tfð Þ
@da1

; …; x2
fj

@W�1
cjj

tfð Þ
@dan

� �
(91)

which can be rewritten as

Cv ¼
wc

wa
x2

fj
rv (92)

Thus, as stated, Eq. (89) will be a perfect CPF for this situation.
It has been shown that the coupling vector is related to the con-

trollability Grammian matrix for the case where the control objec-
tive function is the final time and a constraint on control effort is
active [35]. The coupling vector for that problem formulation was
found to be parallel to the coupling vector found when the control
objective function is control effort. Therefore, it can then be seen
that the CPF developed above will also apply to such problems.

4.2 Control Proxy Function for the Case of Linear Quad-
ratic Regulator (LQR): In the LQR problem, a cost function J is
to be minimized, where J is given in Eq. (93) below and the
weighting matrices Q and R denote the relative cost of errors and
of control, respectively, [36]

J ¼
ð1

0

x tð ÞTQx tð Þ þ u tð ÞTRu tð Þ
	 


dt (93)

The coupling vector for the LQR problem can be related to the
controllability Grammian for a specific choice of the state weight-
ing matrix Q¼ cBBT [35], where c is a positive scalar value. In
the most general, such LQR case, the initial state x0, Wc

1, and A
all depend on da, and a perfect CPF would take the form of

v dað Þ ¼ xT
0 A�TAW1c x0 (94)

As in previous cases, however, there are special circumstances
where a simpler CPF may be chosen. This may be desirable in

Fig. 7 Comparison of simultaneous and CPF solutions for two
choices of CPF
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large problems where computational effort must be reduced. Con-
sider the situation where the matrix A is not a function of da. Such
a situation, while not common, may occur when considering the
problem of locating an actuator for canceling vibrations. If the ac-
tuator mass is small, its position will not affect the free response
of the system; however, it will affect the forced response of the
system. Furthermore, assume that the initial state x0 is a parameter
with exactly one nonzero component, i.e., x0j

6¼ 0,
x0q
¼ 0 8 q 6¼ j; 0 � q � p, and the matrix Wc

1 is diagonal,
which will be the case when a balanced realization is utilized
[36].

For the system described above, select the CPF

v dað Þ ¼ W1cjj
(95)

Its gradient is

rv ¼
@W1cjj

@da1

;
@W1cjj

@da2

; …;
@W1cjj

@dan

� �
(96)

and the coupling vector is given by the relation [35]

Cv ¼
wc

wa
c

1

det A
x2

0j
A2

jj

@W1cjj

@da1

1

det A
x2

0j
A2

jj

@W1cjj

@da2

..

.

1

det A
x2

0j
A2

jj

@W1cjj

@dan

266666666664

377777777775

T

(97)

This leads to the relation

Cv ¼
wc

wa

c
det A

x2
0j

A2
jjrv (98)

and therefore, the CPF is perfect for this problem.
In this section, it has been shown that a CPF based on the con-

trollability Grammian matrix, Wc(tf), can be effective for many
problems, in which either fc or an active constraint is dependent
on control effort. This includes some problems in which the con-
trol objective, fc, is the response time of the system. For the spe-
cific problem formulations investigated here, a perfect CPF can be
formulated based on either the time-dependent or the steady-state
controllability Grammian matrix. As previously stated, these
problem formulations are not exhaustive. It is anticipated that
future work will show that a CPF based on the controllability
Grammian matrix will be effective for additional codesign prob-
lem formulations, particularly, those in which the objective func-
tion or constraints are dependent on control effort.

However, it may not always be possible to formulate a perfect
CPF based on the control Grammian. For example, consider the
case where fc is the maximum control signal, rather than control
effort. A control signal with a high peak that quickly decays may
result in a lower control effort than a signal with a lower peak that
does not decay as quickly. The relationship between the maximum
control signal and control effort, and the choice of an appropriate
CPF for problems in which the control objective, fc, is based on
the maximum control signal, requires further investigation. It is
expected that a CPF based on the controllability Grammian will
produce results that are near-optimal for a variety of problems,
since it provides a measure of how easily a system is controlled.

5 MEMS Actuator and Controller Optimization

The MEMS actuator considered in this case study was origi-
nally designed by Tung and Kurabayashi [37] and is shown in
Fig. 8. This actuator has been designed to produce out-of-plane

displacements and could be useful in a variety of applications,
such as a confocal scanning microscope [37]. The actuator utilizes
four electrostatic comb-drive actuators to produce this out-of-
plane displacement. The actuator can be used to produce an angu-
lar deflection of the platform as well, but, here, only the vertical
displacement of the platform is considered. In order to produce
this displacement, each of the four comb drives is excited with a
voltage, V, resulting in horizontal (in-plane) movement (DX) of
the silicon shuttles. The microhinges on the polydimethyl siloxane
(PDMS) platform bend, and the platform moves vertically, or out-
of-plane (DZ). The amount of movement resulting from the comb
drives’ actuation depends on both the applied voltage, V, and the
physical dimensions of the actuator. Changing the actuator’s
dimensions results in a different output displacement for the same
applied voltage.

The displacement of the actuator, DZ, is given by the equation

DZ ¼ h1 þ h2ð Þ 1� cos Dhð Þ þ tþ pð Þ sin Dh (99)

where p, t, h1, and h2 are the hinge dimensions shown in Fig. 9,
and Dh is the angular displacement of the hinge.

The angular displacement Dh can be found from the differential
equation

MD€hþ CD _hþ KDh ¼ A Dhð ÞV2 (100)

where M, C, K, and A(Dh) are functions of the actuator geometry.
Derivations, and the equations for the various masses and stiff-
nesses of the system components, are given in Ref. [37] and repro-
duced in Ref. [19]. Alternatively, the system dynamics may be

written in state-space form, with x ¼ Dh D _h
h iT

, as

Fig. 8 MEMS actuator configuration

Fig. 9 Microhinge structure
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D _h
D€h

� �
¼ 0 1

�K=M �C=M

� �
Dh
D _h

� �
þ 0

A Dhð Þ=M

� �
V2 (101)

An integral controller with state feedback is applied to the system,
as shown in Fig. 10. It is assumed that the angle Dh and the angu-
lar velocity D _h can be measured, and that the angle Dh is to be
controlled. The dynamics of the closed-loop system can then be
written as

MD€hþ Cþ K2A Dhð Þð ÞD _hþ K þ K1A Dhð Þð ÞDh

� KiA Dhð Þ
ðt

0

Dhr � Dhð Þds ¼ 0 (102)

Note that the controller output is u¼V2, and that the coefficient A
in Eq. (100) is a function of Dh. Thus, the resulting controller
design problem is nonlinear.

5.1 Optimization Problem Formulation. The artifact objec-
tive is to maximize the final displacement of the actuator, DZf, at a
given time tf, where DZf is the peak displacement and is 5% higher
than the steady-state displacement, DZss, see Eq. (103). This
objective function is chosen with the assumption that, while the
final position is important, there may be times in which the actua-
tor’s steady-state displacement is important, and, therefore, the
relationship between the two is relevant to the problem. Artifact
constraints based on manufacturability, kinematics, mechanical
and electrical stability, and stress, are given in Eqs. (105)–(110).
The artifact design variables, da, are p, t, and the shuttle length l1,
with the bounds in Eqs. (111)–(113). The control objective is to
minimize the actuation control effort, see Eq. (104). The control
design variables are the gains K1, K2, and Ki. There are no control
constraints. These variables are summarized in Table 2.

fa ¼ �DZf ¼ �1:05DZss (103)

fc ¼
ðtf

0

u tð Þð Þ2dt ¼
ðtf

0

V tð Þð Þ4dt (104)

ga1
¼ t� 5h1 � 0 (105)

ga2
¼ 910� l1 �

lp
2
� 2tþ DXss

2
� 0 (106)

ga3
¼ neo h1 þ h2ð ÞV2

ss

d
�

kbp2EPDMSw 2h1 þ h2ð Þ3

12p2
� 0

(107)

ga4
¼ DXss �

lSiffiffiffi
2
p � lfo

2

� �
� 0 (108)

ga5
¼ EPDMSh1Dhss

2p
� rPDMSmax

� 0 (109)

ga6
¼ 3DXssESib

4l2Si

� rSimax
� 0 (110)

1 lm � p � 1000 lm (111)

1 lm � t � 1000 lm (112)

100 lm � l1 � 1000 lm (113)

Here, n¼ 50 is the number of fingers in the comb drive,
eo¼ 8.854e – 12 F=m is the permittivity of vacuum, d¼ 3 lm is
the width of a finger, b¼ 3 lm is the thickness of the silicon leaf
spring, w¼ 100 lm is the depth of the micro-hinge, lp¼ 350 lm
is the length of the platform, kb¼ 0.25 is the beam end condition
coefficient, EPDMS¼ 750 kPa is Young’s modulus for PDMS,
lSi¼ 500 lm is the length of the silicon springs, lfo¼ 50 lm is the
initial finger engagement, ESi¼ 190 GPa is Young’s modulus for
silicon, and rPDMSmax

¼ 2:24MPa and rSimax
¼ 1:5GPa are maxi-

mum allowable stresses in PDMS and silicon, respectively. The
steady-state actuator displacement, DZss, can be found from Eq.
(99). The final time is a parameter, tf¼ 0.25 ms.

It is possible to define a variety of possible measures of “ease
of control,” which might serve as a CPF. Such measures could be
based on natural frequency, the controllability Grammian matrix,
the reference signal used to produce the displacement, or a variety
of other measures. The choice of which possible CPF to use is
based on knowledge of the control objective function and on the
fundamental control limitations present in the system. In this case,
the CPF problem to be solved is

min
p;t;l1

w1fa þ w2v ¼ w1fa þ w2

DZ2
f Wc22

tf

� �
det Wc tf

� �� � (114)

subject to the constraints in Eqs. (105)–(110); followed by

min
K1;K2 ;Ki

E ¼
ðtf

0

V tð Þð Þ4dt (115)

Fig. 10 Control architecture and system dynamics

Table 2 Design and control variables for MEMS actuator
optimization

da p Microhinge length
t Microhinge width
l1 Shuttle length

dc K1 Controller gain for Dh
K2 Controller gain for D _h
Ki Integral controller gain

Fig. 11 CPF points for optimization of MEMS actuator
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Optimal values of�DZf and E are shown in Fig. 11, with simula-
tion results for one point shown in Fig. 12. Once a design is
selected, since the closed-loop system is nonlinear, we can conduct
linearization and a local stability analysis to ensure closed-loop
stability. At each of the points shown, the angle n is calculated in
order to determine whether the point is optimal or near-optimal.
For each point, n¼ 0, indicating that the CPF points are Pareto
optimal. However, the CPF points require less computational
effort. Using MATLAB, a typical CPF point required 7 s of computa-
tional time, while a simultaneous solution for that point required
577 s of computational time.

The accuracy of this CPF can be ascertained by examining fc,
whose value is found from Eq. (87), where xf ¼ DZf ; 0½ �T .
Since for an optimal controller, fc¼ v, the tradeoff between dis-
placement and control effort can be evaluated using v, prior to the
formulation of the control optimization problem.

6 Concluding Remarks

A new sequential method for optimization of codesign problems
was introduced using a CPF. The method provides solutions that
are identical or close to the Pareto optimal solutions to the codesign
problem, while the decomposed problem is easier to solve sequen-
tially. The method’s effectiveness depends on the choice of CPF.
Guidelines for choosing a CPF and a metric to evaluate the close-
ness of the solutions were developed and illustrated with examples.
While the method is presented under some assumptions, such as the
presence of unidirectional coupling, these assumptions are not
unique to the codesign problem. Any bi-objective problem exhibit-
ing unidirectional coupling could be successfully solved for optimal
or near-optimal solutions with an appropriate proxy function that
satisfies conditions such as those set forth in this work.

Some limitations were specified in the development of the
theory. A particularly limiting assumption is that no constraints be
active in certain cases. It is expected that the unconstrained case
provides a bound, and that the performance of a CPF for a con-
strained problem will be no worse than the performance of that
CPF if the constraints were not present. Proof of this conjecture
should be a subject of future work. A further limitation is that the
assumption was made that the functional form of the control
objective is known, e.g., that fc can be expressed in terms of da

and dc. In the case of so-called “black-box” controllers, this is not
true. In these cases, it may be possible to formulate a CPF based
on knowledge of the underlying physics that limits controller per-
formance. If this approach is not possible, then an experimental
approach could be taken, in which a design of experiments is used

to empirically construct a CPF. Such problems are of interest, and
should be a subject of future work.

One can discover CPFs for specific codesign problem formula-
tions. Examples are CPFs based on natural frequency [34] and on
the controllability Grammian matrix presented here. It is antici-
pated that a variety of CPFs could be formulated for a wide range
of problems, motivated by the work presented.
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Nomenclature
A ¼ state coefficient matrix determining the unforced

response of a system
A(Dh) ¼ coefficient describing response of MEMS actuator to

an applied voltage
b ¼ thickness of silicon leaf springs in MEMS actuator
B ¼ state coefficient matrix determining the forced

response of a system
C ¼ generalized damping term for MEMS actuator
d ¼ width of finger in comb drive for MEMS actuator

da ¼ vector of artifact design variables
dc ¼ vector of control design variables

EPDMS ¼ Young’s modulus for PDMS
ESi ¼ Young’s modulus for silicon

fa ¼ artifact objective function
fc ¼ control objective function

ga ¼ artifact inequality constraints
gc ¼ control inequality constraints
h1 ¼ thickness of micro-hinge
h2 ¼ height of micro-hinge
ha ¼ artifact equality constraints
hc ¼ control equality constraints
kb ¼ beam end condition coefficient for micro-hinge in

MEMS actuator
K ¼ generalized spring constant for MEMS actuator

K1, K2, Ki ¼ controller gains for MEMS actuator
l1 ¼ length of comb drive in MEMS actuator
lfo ¼ initial finger engagement in MEMS actuator
lp ¼ length of PDMS platform in MEMS actuator
lSi ¼ length of silicon springs in MEMS actuator
M ¼ generalized inertia for MEMS actuator
n ¼ number of fingers in comb drive in MEMS actuator
p ¼ length of micro-hinge in MEMS actuator
t ¼ width of micro-hinge in MEMS actuator
tf ¼ final time for interval of interest
u ¼ control input applied to a system
V ¼ voltage applied to comb drive in MEMS actuator
w ¼ depth of micro-hinge in MEMS actuator

w1 ¼ weight attached to artifact objective function, fa, in
CPF problem formulation

w2 ¼ weight attached to Control Proxy Function, v, in
CPF problem formulation

wa ¼ Weight attached to artifact objective function, fa, in
simultaneous problem formulation

wc ¼ weight attached to control objective function, fc, in
simultaneous problem formulation

Wc(tf) ¼ Controllability Grammian matrix, evaluated at tf
W1c ¼ steady-state controllability Grammian matrix

x ¼ state vector describing a system
x0 ¼ state vector describing a system at t¼ 0
xf ¼ state vector describing a system at t¼ tf
Cv ¼ coupling vectorbCv ¼ estimate of coupling vector
e ¼ distance between a given point in the da-space and

the nearest Pareto optimal point

Fig. 12 Displacement and voltage profile for sample MEMS
actuator design
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eo ¼ permittivity of vacuum
f ¼ empirical parameter used in characterization of

MEMS actuator
DX ¼ horizontal displacement of comb drive in MEMS

actuator
DZ ¼ vertical displacement of MEMS actuator
Dh ¼ angular displacement of micro-hinge in MEMS

actuator
k ¼ vector of Lagrange multipliers associated with equal-

ity constraints
l ¼ vector of Lagrange multipliers associated with in-

equality constraints
n ¼ angle between coupling vector and gradient of Con-

trol Proxy Function
rPDMSmax

¼ maximum allowable stress in PDMS
rSimax

¼ maximum allowable stress in silicon
v ¼ Control Proxy Function (CPF)
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