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Decomposition-based design optimization strategies are used to solve complex engineer-
ing system problems that might be otherwise unsolvable. Yet, the associated computa-
tional cost can be prohibitively high due to the often large number of iterations needed
for coordination of subproblem solutions. To reduce this cost one may exploit the fact
that some systems may be weakly coupled and their interactions can be suspended with
little loss in solution accuracy. Suspending such interactions is usually based on the ana-
lyst’s experience or experimental observation. This article introduces an explicit measure
of coupling strength among interconnected subproblems in a decomposed system optimi-
zation problem, along with a systematic way for calculating it. The strength measure is
then used to suspend weak couplings and, thus, improve system solution strategies such
as the model coordination method. Examples show that the resulting strategy may
decrease the number of required function evaluations significantly.
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1 Introduction

Analysis and design of complex engineering systems often
require decomposing the problem into smaller subsystems in
order to handle comprehension and computation difficulties.
System solution is obtained through coordination of subsystem
solutions. Such coordination is strongly affected by the intercon-
nections or coupling of the subsystems. Intuitively, totally
“uncoupled” subsystems would require the simplest possible
coordination and “fully coupled” systems would gain little by
decomposition and would defy coordination. A number of differ-
ent coupling measures have been proposed, (e.g., [1–3]), each
with its own range of applicability, advantages, and disadvan-
tages. The exact definition of coupling to be used depends on the
nature of the system problem at hand, and in our case this is the
solution of system design optimization problems.

In the multidisciplinary design optimization (MDO) community,
coordination and coupling information are often represented by the,
design structure matrix (DSM) developed by Steward [4], which
assumes that all task relations have strengths of one or zero (exist
or not exist). Gebala and Eppinger [5] proposed a nonbinary DSM
that utilizes problem dependent information to assign numerical
values to the couplings reflecting the strength of the relationship
between tasks and the overall design. This approach utilizes engi-
neering judgment to set the numerical values, based in part on the
perceived consequences of having to estimate information that is
not yet known. While it can be useful in setting the order of design
tasks, it is not readily extensible to design optimization, since that
would require coding engineering judgment into the algorithm and
changing the order of design tasks as the optimization is carried
out. Wagner [6,7] introduced the functional dependence table
(FDT), also referred to as the design incidence matrix, to assist in
model-based decomposition of optimization problems; see also
Krishnamachari and Papalambros [8] and Michelena and Papalam-
bros [9]. The FDT is essentially the Jacobian matrix of problem

functions and, as such, it does not contain binary values. However,
partitioning the FDT requires filtering the partial derivative (or
“sensitivity” values) to a zero–one representation. Moreover, Jaco-
bian values are different at different points in the design space so a
universal coupling strength cannot be established unequivocally.
Interestingly, the DSM is the adjacency matrix of the FDT.

Closer to our present approach, Sobieszczanski-Sobieski [10]
investigated the effect of design variable changes on the interaction
variables in an internally coupled system. He used the chain rule to
relate total derivatives of system outputs with respect to system
design variables to local system derivatives. These total derivatives
are found by solving the resulting set of equations termed the
global sensitivity equations (GSE). Subsequently, English and
Bloebaum [2,11] proposed a method that utilizes the total deriva-
tive-based coupling sensitivity analysis to suspend interaction vari-
ables between systems during MDO coordination cycles.
Emphasis was placed on single-level MDO approaches, such as
multidisciplinary feasible methods [2,11]. The GSE formulations
in these research efforts did not include optimality conditions in
the definition of coupling, and so the design variables are assumed
to be independent of each other. The work presented in this article
augments the definition of GSE to include variable coupling
implied by the need to satisfy optimality. The idea of generalizing
the GSE to include optimality was first proposed by Sobieszczan-
ski-Sobieski [12] as a numerical tool in a bilevel decomposition
strategy. In contrast, the generalization of the GSE in this article is
used in the context of coupling strength quantification. A key dif-
ference between the present approach and that of Sobieski is the
provision for local and global copies of design and interaction vari-
ables. This provision was not included in Ref. [12]; however, it is
necessary to include these local and global copies of the design
variables in the calculation of coupling with a suspension strategy.

Several other authors have examined strength-based coupling
between systems in decomposed optimization problems [13,14].
Reyer et al. [15] and Fathy et al. [3] proposed the use of optimality
conditions to characterize coupling. They defined coupling relative
to the solution method, for example, by comparing the optimality
conditions of a sequential solution strategy with the optimality con-
ditions of the undecomposed system optimization problem. How-
ever, the effect of interaction variables (interconnections) between
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systems on the coupling measure was not directly considered in
that work. Moreover, Fathy’s work was motivated by integration of
design and control problems, and so it examined coupling between
only two subsystems and assumed some objective function separa-
bility. Thus, the effect of all system variables on coupling strength
was not fully explored. The relationship between various proposed
coupling measures for design and control problems was established
in Refs. [16,17]. Recently, Peters et al. [18] studied the relationship
between Fathy’s coupling vector and the controllability Grammian
matrix in design and control problems.

Further work exploring the effect of system variables on cou-
pling strength was performed by Allison et al. [19,20]. Allison’s
work utilized coupling in the decomposition process, with the
intention of decomposing a complex design problem in an optimal
way. Coupling information was also used by Han and Papalam-
bros to formulate a suspension strategy for analytical target cas-
cading (ATC) [21]. Han’s work on complex system optimization
also incorporated uncertainty, as did the work by Han and Papal-
ambros and Gu et al. on collaborative optimization [22,23].

This paper examines how the GSEs can be modified to account
for satisfaction of optimality conditions in defining subsystem cou-
pling relevant to system optimization. This modification leads to a
measure of coupling strength that can be used to suspend weak
variable linking in an MDO strategy. The strategy used for demon-
stration is Kirsch’s model coordination method [24], chosen for its
feasible intermediate solutions and easy applicability to design
problems. Section 2 poses the problem under consideration. Section
3 shows how the new coupling measure can be derived accounting
for satisfaction of optimality. Section 4 presents the model coordi-
nation method with variable suspension strategy. Section 5 presents
a mathematical example with the model coordination method, and
Secs. 6 and 7 present example implementations for a simple struc-
ture and a direct current (DC) motor, respectively. The paper con-
cludes in Sec. 8 with a discussion of limitations and future work.

2 The System Optimization Problem

We consider design optimization of a supersystem that has been
decomposed into four coupled systems, Fig. 1. Each system is
assumed to perform its own optimization problem using its own
analysis models and information from the other systems. A general
nonhierarchical structure is assumed, with a hierarchical decompo-
sition being a special case. Each system interacts (is “coupled”)
potentially with all the other systems though the interaction varia-
bles yij 2 Rlij , where lij is the dimension of yij. A direction of infor-
mation flow is implied, so yij represents information going from
system i to system j, and yii is used to represent information from
analysis models within system i used to compute the functions
(objectives or constraints) in the system optimization problem. This
allows representation of various MDO schemes that involve infor-
mation exchange among analyses as well as design decisions.

The design optimization problem for a supersystem with objec-

tive F : R
PN

i¼1
ni ! R to be decomposed in N systems is stated as

follows:

min
fxiji¼1;…;Ng

Fðf1ðx1;…; xN ; y11;…; yN1Þ;…

…; fNðx1;…; xN ; y1N ;…; yNNÞ; x1;…; xNÞ
subject to giðx1;…; xN ; y1i;…; yNiÞ � 0

hiðx1;…; xN ; y1i;…; yNiÞ ¼ 0

i ¼ 1;…;N; j ¼ 1;…;N (1a)

where

yij ¼ Yijðx1;…; xN ; y1i;…; yNiÞ (1b)

represents the analysis models, namely, the functional dependence of
the interaction variables on the design variables of each system
xi 2 Rni and on all other interaction variables. The vector xi includes
local variables specific to system i and shared variables that are com-
mon in at least two systems. Hence, the xi’s may have common com-
ponents. The system objectives fi : Rqi ! R and constraints
gi : Rqi ! Rmi , hi : Rqi ! Roi may depend on other systems’
design variables x1,…,xN, as well as on the interaction variables that
bring information from each of the other systems. Also, ni, mi, oi, lij
are the dimensions of the vectors xi, gi, hi, yij, respectively, and
qi ¼D

PN
j¼1 ðnj þ ljiÞ is the total number of design and interaction

variables associated with system i. Note that in the problem state-
ment above no assumption is made on the form of the decomposition
or the structure of the objective and constraint functions.

After decomposition, the design optimization problem for sys-
tem i is stated as follows:

min
xi

fiðx1;…; xN ; y1i;…; yNiÞ

subject to giðx1;…; xN ; y1i;…; yNiÞ � 0

hiðx1;…; xN ; y1i;…; yNiÞ ¼ 0: (2)

We assume that the optimal solution of the N system optimization
problems in Eq. (2) combined with the analysis equations in Eq.
(1b) will yield the supersystem optimization problem optimal
solution in Eq. (1a). If the objective function F is separable, i.e.,
F f1; f2;…; fNð Þ ¼

PN
i¼1 Fi fið Þ, and @Fi=@fi > 0 8 i, then this

assumption will be valid, as shown for the case with two objective
functions in Ref. [17]. Other problem formulations, not requiring
separability, may also satisfy this assumption. Convergence to the
supersystem optimal solution depends on the decomposition strat-
egy utilized.

A variable suspension strategy during a solution process will
ignore the link between two systems for one or more iterations k.
Namely, during suspension we set

xi;kþ1 ¼ xi;k; yij;kþ1 ¼ yij;k (3)

where the index after the comma indicates iteration number.

3 Generalized Coupling Strength and the Modified

Global Sensitivity Equations

Sobieski’s GSEs [10] provide a foundation for the work pre-
sented later in this article. Following the notation of Fig. 1, con-
sider a three-system problem with the following analysis equations

y12 ¼ Y12ðx; y23; y31Þ (4a)

y23 ¼ Y23ðx; y12; y31Þ (4b)

y31 ¼ Y31ðx; y12; y23Þ (4c)

where x are the supersystem variables. In the original Sobieski
derivation all system outputs are considered identical, and soFig. 1 Nonhierarchical system interactions notation

091005-2 / Vol. 133, SEPTEMBER 2011 Transactions of the ASME

Downloaded 10 Sep 2011 to 141.213.155.212. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



y12¼ y13, y21¼ y23, y31¼ y32; further, no internal simula-
tion=analysis is assumed, and so y11¼ y22¼ y33¼ 0.

Using the chain rule, the total derivatives of system outputs
with respect to system design variables, dy12=dx, dy23=dx, and
dy31=dx, are given by the GSEs [10]

I � @y12

@y23

� @y12

@y31

� @y23

@y12

I � @y23

@y31

� @y31

@y12

� @y31

@y23

I

2
66666664

3
77777775

dy12

dx
dy23

dx

dy31

dx

2
6666664

3
7777775
¼

@y12

@x

@y23

@x

@y31

@x

2
6666664

3
7777775

(5)

The left-hand side matrix in Eq. (5) contains the partial derivatives
(sensitivities) of system outputs with respect to changes in other
systems’ output. The right-hand side matrix contains the partial
derivatives of system outputs with respect to system design varia-
bles. These derivatives are evaluated analytically or numerically.

We now proceed to develop a modification of the GSEs to
account for optimality of supersystem design. The Lagrangians of
the N problems in Eq. (2) are

Li ¼ fiðx1;…; xN ; y1i;…; yNiÞ þ lT
i giðx1;…; xN ; y1i;…; yNiÞ

þ kT
i hiðx1;…; y1i;…; yNiÞ i ¼ 1;…;N (6)

where ki, li are the Lagrange multipliers for the equality, inequal-
ity constraints, respectively, and the vector of supersystem varia-
bles x is partitioned into a set of vectors x1, x2,…,xN. The first
order Karush-Kuhn-Tucker (KKT) stationarity conditions [25] are
written as

@fi

@xi
þ lT

i

@gi

@xi
þ kT

i

@hi

@xi
þ
XN

j¼1

@fi

@yji

dyji

dxi

þ
XN

j¼1

lT
i

@gi

@yji

dyji

dxi

 !
þ
XN

j¼1

kT
i

@hi

@yji

dyji

dxi

 !
¼ 0T

ki 6¼ 0; li � 0; lT
i gi ¼ 0 i ¼ 1;…;N (7)

The total derivatives dyij=dxi in Eq. (7) can be found by taking the
derivatives of Eq. (1b)

dyjp

dxi
¼
@yjp

@xi
þ
@yjp

@y1j

dy1j

dxi
þ � � � þ

@yjp

@yNj

dyNj

dxi

i ¼ 1;…;N; j ¼ 1;…;N; p ¼ 1;…;N (8)

collected in matrix form as

I �@y12

@y21

:: � @y12

@yNN

�@y21

@y12

I � @y21

@yNN

..

.
::

�@yNN

@y12

�@yNN

@y21

I

2
66666666664

3
77777777775

dy12

dx1

:::
dy12

dxN

dy21

dx1

:::
dy21

dxN

..

.

dyNN

dx1

:::
dyNN

dxN

2
66666666664

3
77777777775
¼

@y12

@x1

:::
@y12

@xN

@y21

@x1

:::
@y21

@xN

..

.

@yNN

@x1

:::
@yNN

@xN

2
66666666664

3
77777777775

(9)

which are Sobieski’s GSEs [12]. These must be extended to
account for the presence of local and global copies of variables
and thus provide a measure of coupling strength when systems are
suspended, as we will see next.

Suppose that the link of system i with the rest of the systems is
weak and the system i variables can be suspended. When system i

is suspended, it is not re-optimized in response to changes in the
optimal values of other systems. Then the system design variables
xi become parameters in the new optimization problem with xi

suspended. The coupling strength is defined as dF*(xi)=dxi,
namely, the sensitivity of the supersystem optimal objective with
respect to xi. When this sensitivity is small, changes in xi will
result in only small changes to the supersystem optimum, and thus
it is a useful measure of coupling. From the implicit function theo-
rem the conditions in Eq. (7) can be solved for each xl, except for
the optimality condition corresponding to suspended system i

ŷjp ¼ Yjpðx̂1;…; x̂N ; ŷ1j;…; ŷNjÞ (10a)

x̂l ¼ Xlðx̂1;…; x̂l�1; x̂lþ1;…; x̂N ; ŷ1l;…; ŷNlÞ
l ¼ 1;…;N; j ¼ 1;…;N; p ¼ 1;…;N l 6¼ i (10b)

Here Xl is the corresponding solution function. The analysis equa-
tions in Eq. (1b) are also rewritten with “hats”: The system design
variables x̂i and the interaction variables ŷij will have different
sensitivities from xi and yij, respectively, hence the hat. Note that
the optimality condition corresponding to system i with xi sus-
pended is not included in Eq. (10b). Moreover, the hat is not used
on the suspended variable xi.

Let us now consider how this coupling strength is computed.
The sensitivity of the supersystem optimal objective in Eq. (1a)
with respect to xi can be expressed as

Ci ¼D
dF

dxi
¼
XN

p¼1

XN

j¼1

@F

@fp

@fp
@xj

dx̂j

dxi

� �

þ
XN

p¼1

XN

j¼1

@F

@fp

@fp

@yjp

dŷjp

dxi

 !
þ
XN

j¼1

@F

@xj

dx̂j

dxi
(11)

The 1� ni vector Ci, which is the partial derivative of the system
objective function with respect to the variables of system i, is the
coupling function for system xi. In matrix form Eq. (11) is written as

C ¼D

C1

C2

:

CN

2
66664

3
77775

T

¼

@F

@f1

@f1

@y11

:
@F

@fN

@fN

@y1N

@F

@f1

@f1

@y21

:
@F

@fN

@fN

@y2N

:
@F

@f1

@f1

@yN1

:
@F

@fN

@fN

@yNN

2
66666666666666666666666666664

3
77777777777777777777777777775

T

dŷ11

dx1

dŷ11

dx2

…
dŷ11

dxN

dŷ12

dx1

dŷ12

dx2

…
dŷ12

dxN

..

.

dŷNN

dx1

dŷNN

dx2

…
dŷNN

dxN

2
66666666664

3
77777777775
þ

PN
j¼1

@F

@xj

dx̂j

dx1

..

.

PN
j¼1

@F

@xj

dx̂j

dxN

2
66666664

3
77777775

T

þ

PN
p¼1

PN
j¼1

@F

@fp

@fp

@xj

dx̂j

dx1

� �

..

.

PN
p¼1

PN
j¼1

@F

@fp

@fp
@xj

dx̂j

dxN

� �

2
66666664

3
77777775

T

(12)

where C is defined as the vector collection of all Ci’s. Note that C
is a row vector with dimensionality 1�

PN
i¼1 ni; the four matrices
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on the right side of the equation have dimensionality 1�N3,
N3 �

PN
i¼1 ni, 1�

PN
i¼1 ni, and 1�

PN
i¼1 ni, respectively.

Since some analysis functions do not yield meaningful solutions
at an infeasible point, it will be assumed that a feasible design point
can be found. Given such a feasible point, most of the elements of
the coupling function in Eq. (11) can be evaluated readily. The
objective partial derivatives are evaluated first, analytically or
numerically. The next two quantities to find are the total derivatives
dx̂j=dxi and dŷij=dxi. Equation (10a) can be used to determine
dx̂j=dxi, dŷij=dxi based on local partial derivatives as follows:

dŷjp

dxi
¼
@ŷjp

@x̂1

dx̂1

dxi
þ � � � þ

@ŷjp

@x̂N

dx̂N

dxi
þ
@ŷjp

@ŷ1j

dŷ1j

dxi
þ � � �

þ
@ŷjp

@ŷNj

dŷNj

dxi
i ¼ 1;…;N; j ¼ 1;…;N; p ¼ 1;…;N

(13)

Suspending system 1 and taking the derivatives of Eq. (10b) we
get

dx̂j

dxi
¼ @x̂j

@x̂1

dx̂1

dxi
þ � � � þ @x̂j

@x̂N

dx̂N

dxi

þ @x̂j

@ŷ1j

dŷ1j

dxi
þ � � � þ @x̂j

@ŷNj

dŷNj

dxi

i ¼ 2;…;N; j ¼ 1;…;N; p ¼ 1;…;N (14)

Collecting the resulting equations in matrix form gives the modi-
fied global sensitivity equations (MGSE),

I � � � � @ŷ12

@ŷNN

�@ŷ12

@x1

� � � �@ŷ12

@xN

�@ŷ21

@ŷ12

� � � I �@ŷ21

@x1

� � � �@ŷ21

@xN

..

. ..
. . .

.

�@ŷNN

@ŷ12

. .
.
�@ŷNN

@ŷ21

�@ŷNN

@x1

� � � �@ŷNN

@x2

� @x̂2

@ŷ12

� � � � @x̂2

@ŷ21

I � � � �@x̂2

@x3

..

. ..
. . .

.

� @x̂N

@ŷ12

� @x̂N

@ŷ21

�@x̂N

@x2

� � � I

2
666666666666666666666664

3
777777777777777777777775

dŷ12

dx1

..

.

dŷNN

dx1

dx̂2

dx1

..

.

dx̂N

dx1

2
666666666666666664

3
777777777777777775

¼

@ŷ12

@x1

..

.

@ŷN1

@xN

@x̂2

@x̂1

..

.

@x̂N

@x̂1

2
666666666666666664

3
777777777777777775

(15)

The local derivatives @ŷij=@x̂i, @ŷij=@ŷji, @x̂j=@xi, @x̂j=@yij can be
computed either analytically or numerically using finite differen-
ces. The terms @ŷij=@x̂i, @ŷij=@ŷji represent local analysis deriva-
tives, while @x̂j=@xi, @x̂j=@yij represent derivatives of the
optimum with respect to parameters. We use the KKT conditions
at the optimum to predict the local derivatives [26], based on the
assumption that constraints at the optimum remain active as x1 is
changed. Those constraints which are inactive do not effect the
local derivatives, and may therefore be neglected in this calcula-
tion. Second order derivatives of the objective and active con-
straints are required, as well as the Lagrange multipliers
associated with the optimum design.

The MGSEs are different from the original GSEs in that they
include the optimality conditions as part of the coupled system of
equations used to compute the solution sensitivity. Thus, the MGSEs
account for the relationship between optimization and analysis. The
key point here is that in a decomposed supersystem, the effect of one
system on another may be small at nonoptimal feasible points but
large at the optimum, which, after all, is the point of interest.

4 The Model Coordination Method With Variable

Suspension

We consider now the model coordination method of Kirsch and
Schoeffler [24,27] along with a variable suspension strategy dur-
ing optimization. Suspension reduces the number of system opti-
mizations yielding a more efficient strategy for solving the model
coordination method. Note that, while suspension is being demon-
strated here for the model coordination method, the suspension
strategy can be applied to decomposition-based methods involv-
ing partitioning and coordination of subsystems. Such methods
may be either hierarchical or nonhierarchical.

Model coordination is a hierarchical two-level method that sol-
ves independent system optimization problems by fixing their
coordination variable. The convergence of the model coordination
method is not guaranteed [24]. However, the method remains
attractive in design problems because even if convergence of the
coordination is not attained, the intermediate solutions are feasible
and usually represent an improvement in the objective function.
Consequently, the method is also known as the feasible decompo-
sition method.

Consider a supersystem decomposed using the model coordina-
tion method into several coupled systems. The undecomposed
supersystem optimization problem is

min
z;v

Fðz; vÞ

subject to gðz; vÞ � 0; hðz; vÞ ¼ 0 (16)

where z 2 Rn is the vector of design variables, and v 2 Rn3 is the
vector of coordination variables. Let z be partitioned into
z ¼ ½zT

1 ; z
T
2 �

T
, n¼ n1þ n2, and assume that the problem and its

objective function can be decomposed into the following two
systems

Fðz; vÞ ¼ f1ðz1; vÞ þ f2ðz2; vÞ
giðzi; vÞ � 0; hiðzi; vÞ ¼ 0 i ¼ 1; 2 (17)

where zi 2 Rni is the vector of design variables. The model coor-
dination method converts the supersystem optimization problem
in Eq. (16) into the decomposed two-level problem in Eq. (18)
and shown in Fig. 2, by fixing the coordination variable v.

UpperLevel : min
v

f1ðz1; vÞ þ f2ðz2; vÞ

LowerLevel : min
zi

>i ðzi; vÞ

giðzi; vÞ � 0; hiðzi; vÞ ¼ 0 i ¼ 1; 2

(18)

To characterize coupling associated with the model coordination
method the problem formulation in Eq. (18) is written in terms of
the coupled systems notation of Eq. (1a). Letting x1¼ z1, x2¼ z2,
x3¼ v, Eq. (18) can be rewritten as

Fig. 2 The model coordination method
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System 1: min
x1

f1ðx1; x3Þ
g1ðx1; x3Þ � 0; h1ðx1; x3Þ ¼ 0

System 2: min
x2

f2ðx2; x3Þ
g2ðx2; x3Þ � 0; h2ðx2; x3Þ ¼ 0

(19)

System 3: min
x3

f3 ¼ f1ðx3; x2Þ þ f2ðx3; x3Þ

where system 3 represents the upper-level coordinator, Fig. 3.
Let us now consider a hierarchical coupling suspension (HCS)

strategy, an optimization strategy that intelligently suspends a sys-
tem’s optimization variables in the case of weak coupling, during
at least some of the iterations. Suspending variable x1 of system 1
results in “systems with suspension” and an isolated system, as
shown in Fig. 4.

The HCS strategy flowchart is shown in Fig. 5. The algorithm
estimates dx�2ðx1Þ=dx1, dx�3ðx1Þ=dx1, which are the sensitivities of
the optimal solution with respect to suspended variable x1. The
algorithm then computes df �3 ðx1Þ=dx1, the sensitivity of system 3
optimal objective with respect to x1, which indicates coupling
strength. This strength is used to determine whether to continue to
suspend x1. After suspension, system design variable changes
resulting from the optimization process alter the sensitivities
dx�2ðx1Þ=dx1, dx�3ðx1Þ=dx1, df �3 ðx1Þ=dx1 and require computing
new sensitivities. A trust region criterion can be used to avoid
frequent updating of derivatives. After convergence, the optimiza-
tion problem is solved without suspension to validate the suspen-
sion decision.

The algorithm’s steps are described in more detail as follows:

Step 0: Initialize. Set k¼ 0 with an initial feasible design x1,0,
x2,0, x3,0. Set k¼ 1 and optimize systems 1 and 2 to yield
x�1;1 and x�2;1, respectively; complete the iteration by utilizing
x�1;1 and x�2;1 to optimize system 3.

Step 1: Estimate sensitivities of the optimal solution with respect
to suspended variables. The sensitivities dx�2ðx1Þ=dx1,
dx�3ðx1Þ=dx1 are needed to determine the coupling strength
df �3 ðx1Þ=dx1. Note that x1 is a parameter in the system with
suspension, so these sensitivities are parameter sensitivities at
the optimal solution of systems 2 and 3. To this end, represent
systems 2 and 3 in the format of Eq. (10b)

ðSystem2Þ x̂2 ¼ X2ðx1; x̂3Þ (20)

ðSystem3Þ x̂3 ¼ X3ðx1; x̂2Þ (21)

where the Xi’s are the corresponding solution functions. The
system design variable x̂i will have different sensitivities from
xi, hence the hat. The derivatives of x̂2 and x̂3 with respect to
x1 in Eqs. (20) and (21) can be expressed from Eq. (15) as

I � @x̂2

@x̂3

� @x̂3

@x̂2

I

2
664

3
775

dx̂2

dx1
dx̂3

dx1

2
664

3
775 ¼

@x̂2

@x1
@x̂3

@x1

2
664

3
775 (22)

The optimal solution sensitivities dx�2ðx1Þ=dx1, dx�3ðx1Þ=dx1

can be determined by solving the linear equations in Eq.
(22) given the local derivatives @x̂2=@x̂3, @x̂3=@x̂2,
@x̂2=@x1, @x̂3=@x1. A solution to these equations can gener-
ally be found; due to the presence of the identity matrices, it

Fig. 3 The model coordination method written in the coupled
systems optimization framework

Fig. 4 The model coordination method with variable x1

suspended

Fig. 5 The HCS algorithm flowchart
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is unlikely that the matrix of partial derivatives would be
rank deficient. The difficulty is that dx̂2=dx1 and dx̂3=dx1

have to be calculated at the optimal solution of the problem
with x1 suspended to satisfy the functional relationship they
were derived from. This requirement does not provide a cri-
terion for suspension, only a check at the final iteration to
see if the suspension was correct. If the feasible solution
chosen as a starting point is far from optimality, it is possi-
ble that the coupling strength at the optimum will be signifi-
cantly different from the strength calculated at this point.
However, if the method used produces an improvement in
the solution to the supersystem problem, then it can be
expected that the coupling strength calculated will be more
accurate as the solution method progresses.
Here, Eq. (22) is evaluated at the current feasible point and
the values of dx̂2=dx1 and dx̂3=dx1 are only estimates of the
sensitivities at the optimum.

Step 2: Estimate sensitivities of the supersystem objective with
respect to suspended variables. The suspension decision
depends on the value of df3*(x1)=dx1, which indicates cou-
pling strength. To explain the meaning of the suspension de-
cision associated with df �3 ðx1Þ=dx1, assume a first-order
Taylor series expansion of the system 3 objective function
at the optimum with suspension

@f �3 ¼
@f �3
@x1

@x1 þ
@f �3
@x2

@x2 þ
@f �3
@x3

@x3 (23)

The optimal solution sensitivities dx̂2ðx1Þ=dx1, dx̂3ðx1Þ=dx1

can be used to relate @x1 to @x2 and @x3 at the optimum
with x1 suspended

@x2 ¼
dx̂2

dx1

@x1; @x3 ¼
dx̂3

dx1

@x1 (24)

Then Eq. (23) gives

@f �3 ¼ C1@x1 ¼
@f �3
@x1

þ @f �3
@x2

dx̂2

dx1

þ @f �3
@x3

dx̂3

dx1

� �
@x1 (25)

where C1 is the coupling function defined from Eq. (11) as

C1 ¼D
df �3 ðx1Þ

dx1

¼ @f �3
@x1

þ @f �3
@x2

dx̂2

dx1

þ @f �3
@x3

dx̂3

dx1

(26)

The coupling function C1 represents the effect of a perturba-
tion @x1 on the optimal objective function value of system 3
with suspension. If C1 is “small” then one can assume weak
coupling and suspend variable x1.
Similarly, if x2 is suspended we get

@f �3 ¼ C2@x2 ¼
@f �3
@x1

dx̂1

dx2

þ @f �3
@x2

þ @f �3
@x3

dx̂3

dx2

� �
@x2 (27)

C2 ¼
D df �3 ðx2Þ

dx2

¼ @f �3
@x1

dx̂1

dx2

þ @f �3
@x2

þ @f �3
@x3

dx̂3

dx2

: (28)

If C2 is small then one can suspend variable x2. Similar
equations can be derived for problems with a greater num-
ber of subsystems, by expanding Eq. (11).

Step 3: Suspension criterion. The suspension criterion uses the
relative magnitude of the Ci’s. Here, if kC1k< ckC2k then
suspend x1, if kC2k< ckC1k then suspend x2. The coupling
parameter c<< 1 is chosen based on the designer’s experi-

ence. If C2 is “much larger” than C1 then x1 can be sus-
pended because it will have relatively little effect on @f �3 .
Similarly, if C1 is much larger than C2 then x2 can be
suspended.

Step 4: Suspension Validation. After isolating system 1, the
design variables of systems 2 and 3 change during optimiza-
tion with a corresponding change @x�1 in the estimated x�1. A
large change in x�1 can cause large changes in dx̂2=dx1 and
dx̂3=dx1, making their prediction invalid. If @x�1

�� �� < d then
estimates are considered valid. The parameter d> 0 is
defined as the radius of the trust region where the linear
approximation is considered acceptable. Note that this crite-
rion does not take into consideration other design variables’
effect. If k@x1k> d then the estimates are considered invalid
and dx̂2=dx1, dx̂3=dx1, and C1 must be updated. This update
requires performing one system 1 optimization and recom-
puting dx̂2=dx1, dx̂3=dx1, and C1.

Step 5: Reconnecting the suspended system. If any condition in
Steps 3 or 4 is violated, then the isolated system must be
reconnected.

Step 6: Termination rules. The algorithm is terminated typically
if kx3,k�1� x3,kk< e.

The advantage of using the HCS strategy in model coordination
is the expected computational savings associated with variable
suspension. The computational tradeoff is between reduced sys-
tem optimization runs and computation of sensitivities.

5 Suspension Strategy Example

The following example is a simple unconstrained optimization
problem, which is sufficient to illustrate the key ideas of the HCS
strategy and the procedural approach for coupling calculation.
The example focuses on two main ideas. The first is to

Fig. 6 The model coordination method for the unconstrained
optimization example

Fig. 7 System iterations with and without suspension
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demonstrate the HCS strategy on a weakly coupled system. The
second is to show the computational savings of the HCS strategy
when applied to the model coordination method.

Consider the problem

min
x1;x2 ;x3

f3 ¼ 0:2ð0:3x1 � 4� x3Þ2 þ 20ðx2 � 20þ x3Þ2 þ 3x2
3

(29)

The stationarity conditions are

@f3
@x1

¼ 0:4ð0:3x1 � 4� x3Þ0:3 ¼ 0

@f3

@x2

¼ 40ðx2 � 20þ x3Þ ¼ 0

@f3

@x3

¼ �0:4ð0:3x1 � 4� x3Þ þ 40ðx2 � 20þ x3Þ þ 6x3 ¼ 0

and the optimal solution is x�1 ¼ 4=0:3, x�2 ¼ 20, and x�3 ¼ 0. The
model coordination method is used as shown in Fig. 6. To calcu-
late the coupling function, the optimal solution sensitivities
dx�2ðx1Þ=dx1, dx�3ðx1Þ=dx1 must be determined first using Eq. (22),

1 1

0:862 1

� � dx̂2

dx1
dx̂3

dx1

2
64

3
75 ¼ 0

0:0026

� �
;

1 0

0 1

� � dx̂1

dx3
dx̂2

dx3

2
664

3
775 ¼ 3:33

�1

� �

1 �3:333

�0:0026 1

� � dx̂1

dx2
dx̂3

dx2

2
64

3
75 ¼ 0

�0:862

� �

dx̂2

dx1
dx̂3

dx1

2
64

3
75 ¼ �0:019

0:019

� �
;

dx̂1

dx2
dx̂3

dx2

2
64

3
75 ¼ �2:899

�0:869

� �
;

dx̂1

dx3
dx̂2

dx3

2
664

3
775 ¼ 3:33

�1

� �

(30)

The coupling functions for systems 1 and 2 are determined from
Eq. (26) as

C1 ¼
@f3

@x1

þ @f3

@x2

dx̂2

dx1

þ @f3

@x3

dx̂3

dx1

; C2 ¼
@f3

@x1

dx̂1

dx2

þ @f3

@x2

þ @f3

@x3

dx̂3

dx2

(31)

Applying the HCS strategy, set the initial design x1,0¼ 11.619,
x2,0¼ 12.381 and optimize system 3 to get x3,0¼ 6.5637.

The coupling functions in the first iteration are C1¼ 0.738,
C2¼ 34.2. Hence, system 1 is isolated and x1 is suspended. The
remaining systems 2 and 3 are optimized until termination. In the
course of this optimization, the coupling strength for system 1 is
not calculated at each iteration; since the coupling strength for
system 2 is so much greater, it is assumed that system 1 will be
suspended for the majority of the algorithm. Figure 7 compares
iterations with and without suspension. Notice that suspension of
x1 has very little effect on the optimal solution of the overall sys-
tem. As a result, ignoring system 1 reduces the computational
time by a third and yields the same optimal solution. Figure 8
compares the coupling functions for the no suspension case versus

Fig. 8 Optimization coupling function behavior without
suspension

Fig. 9 Structural example configuration
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the iteration steps. C1 is very small compared to C2 at the initial
iterations, so suspending x1 has little effect on the iteration pro-
cess. Changes in the scaling of the variables x1, x2, and x3 would
change the sensitivities of f1, f2, and f3 with respect to the design
variables. However, in the calculation of C, this will be cancelled
out by the necessary scaling of the local objective function to
achieve the same optimal solution for the overall system.

The HCS strategy demonstrated considerable computational ef-
ficiency for the model coordination method by suspending system
1. The supersystem problem required 60 iterations and the solu-
tion of 180 system optimization problems. With system 1 sus-
pended, the problem required 60 iterations but only 120 system
optimization solutions. The savings gained by ignoring system 1
for a limited time are larger than the computational burden of
solving Eq. (26).

6 Optimization of a Simple Structure Using

Suspension Strategy

Consider a simple structure, as shown in Fig. 9. A load, F, is
applied at point D. The structure is to be optimized for minimum
material usage, subject to constraints on stress and the displace-
ment at point D, as given in Eqs. (32)–(36). The design variables
are the cross-sectional area of each bar, A1–A6, and the vertical
dimensions y1 and y2. Parameter values for l1–l6, y3, and F are
given in Fig. 9, with all dimensions in meters. Maximum stress,
deflection, and elastic modulus values are given in Table 1.

min
Ai;i¼1;…;6;y1;y2

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ y2

2

q
þ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2 þ y2

2

q
þ

A3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2ð Þ2þ l23

q
þ A4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y1ð Þ2þ l24

q
þ

A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l25 þ y2

1

q
þ A6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
6 þ y2

1

q
(32)

subject to gi ¼ Fi=Ai � rimax
� 0; i ¼ 1;…; 6 (33)

g7 ¼ dD � dDmax
� 0 (34)

g8 ¼ y1 � y3 � 0 (35)

g9 ¼ y2 � y3 � 0 (36)

The structure is partitioned into two subsystems, as shown in Fig.
9, with the subsystem objectives and constraints as follows:

Subsystem 1:

min
A1;A2 ;A3

f1 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ y2

2

q
þ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
2 þ y2

2

q
þ

A3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2ð Þ2þ l2

3

q (37)

subject to gi ¼ Fi=Ai � rimax
� 0; i ¼ 1;…; 3 (38)

Subsystem 2:

min
A4;A5;A6

f2 ¼ A4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y1ð Þ2þ l2

4

q
þ A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
5 þ y2

1

q
þ

A6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l26 þ y2

1

q (39)

subject to gi ¼ Fi=Ai � rimax
� 0; i ¼ 4;…; 6 (40)

Subsystem 3:

min
y1 ;y2

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 þ y2

2

q
þ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ y2

2

q
þ

A3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2ð Þ2þ l2

3

q
þ A4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y1ð Þ2þ l2

4

q
þ

A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
5 þ y2

1

q
þ A6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l26 þ y2

1

q
(41)

Table 1 Parameter values for structural example

Parameter Value

E1, E2 (GPa) 150
E3, E4 (GPa) 180
E5, E6 (GPa) 120
r1max

; r2max
ðMPaÞ 100

r3max
; r4max

ðMPaÞ 120
r5max

; r6max
ðMPaÞ 80

dDmax
ðmmÞ 2.50

Fig. 10 Comparison of coupling strength in structural
example

Fig. 11 Comparison of coupling strength in DC motor example

Table 2 Values of parameters for DC motor

Parameter Value

qCu (kg=m2) 8890
qFe (kg=m2) 7750
Awa (mm2) 2
Awf (mm2) 0.5
Lwa (cm) 50
Lwf (cm) 500
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subject to g7 ¼ dD � dDmax
� 0 (42)

g8 ¼ y1 � y3 � 0 (43)

g9 ¼ y2 � y3 � 0 (44)

A suspension strategy was implemented in this problem, with a
starting point of A1¼ 500 mm2, A2¼ 25 mm2, A3¼ 1500 mm2,
A4¼ 50 mm2, A5¼ 100 mm2, A6¼ 100 mm2, y1¼ 0.125 m, and
y2¼ 0.25 m. Subsystem 1 was suspended when the magnitude of
C1 was less than one fourth that of C2. In this case, the system
converged to an optimal solution in four iterations, with results of
A1¼ 682 mm2, A2¼ 38 mm2, A3¼ 826 mm2, A4¼ 69 mm2,
A5¼ 200 mm2, A6¼ 220 mm2, y1¼ 0.50 m, and y2¼ 0.27 m. In
three of those four iterations, subsystem 1 was suspended. By
comparison, when the system was optimized without a suspension
strategy, seven iterations were required to reach the same optimal
solution. Thus, the suspension strategy resulted in substantial
computational savings, since it both required fewer iterations and
optimized only one of the two subsystems in most iterations. This
result is due to the weakness of the coupling of subsystem 1, as
shown in Fig. 10.

7 Optimization of a DC Motor Using Suspension

Strategy

In this example, a DC motor with a proportional-integral-deriv-
ative (PID) controller is optimized using the model coordination
strategy described previously. The model used for the optimiza-
tion was developed by Reyer and Papalambros [28]. The subsys-
tems consist of the motor design and motor control. The objective
functions for these subsystems are given by Eqs. (45) and (46),
respectively; the motor design is to be optimized for minimum
weight, and the motor control is to be optimized for the minimum
value of a quadratic cost function. This cost function includes
both the error in the motor speed and the maximum voltage
requirement. The overall system objective is a weighted sum of
the two individual objectives, with differing weights assigned to
the design and control. The constraints for the subsystems are
given by Eqs. (1) and (2) in Ref. [28], respectively.

f1 D; L; dsð Þ ¼ W

¼ qCu AwaLwa þ Awf Lwf

� 	
þ qFeLp Dþ dsð Þ2 (45)

f2 Kp;Ki;Kd

� 	
¼ J ¼

ðtf

0

xT
errQxerrdtþ Vmax (46)

f3 nd;Vdð Þ ¼ 0:1W þ 0:9J (47)

In subsystem 1, the design variables are the rotor diameter, D,
depth of slots, ds, and rotor axial length, L. In subsystem 2, the
design variables are the gains of the PID controller, Kp, Ki, and
Kd. In the overall system, the design variables are the design speed
of the motor, nd, and the design voltage, Vd. The starting point for

the motor design was set at D¼ 7 cm, ds¼ 0.8 cm, and L¼ 15 cm,
and the starting point for the control optimization was set at
Kp¼ 0.9, Ki¼ 5.0, and Kd¼ 0.01. The values of parameters are
given in Tables 2 and 3. The system was optimized both with and
without suspension. In both cases, the system optimization con-
verged to the optimal values given in Table 3. In the case where
no suspension strategy was employed, the system design was
complete in 16 iterations. However, when a suspension strategy
was used, 8 iterations were required. In addition to requiring fewer
iterations, the majority of the iterations required less computation.
At each step, the coupling values were computed and compared,
and the coupling strength for sub-system 1 was substantially less
than that for sub-system 2, as shown in Fig. 11. Therefore, sub-
system 1 was suspended throughout the optimization and re-con-
nected at the final iteration. The calculation of the coupling values
did add to the computational time for a full iteration between sub-
systems, but it reduced the number of iterations and the function
evaluations required in each iteration. The decomposed optimiza-
tion with suspension strategy required 4.1 minutes to run, in con-
trast to a run time of 30 minutes for the decomposed optimization
with no suspension. In summary, in this problem the suspension
strategy offers reduction of iterations by half and of computational
time by a factor of seven. Such gains cannot be claimed to be uni-
versal and will vary with the specific problem structure.

8 Conclusion

This article introduced a coupling strength measure for a gen-
eral nonhierarchical decomposed design optimization problem.
The coupling strength measure accounts for optimality by includ-
ing the optimality conditions of the decomposed supersystem
along with the analysis equations in a modified form of the global
sensitivity equations.

Numerical computation of the coupling function involves
solving a set of linear equations that requires first and second
order derivative information of the objectives, constraints, and
analysis equations. First-order information can be readily avail-
able from the individual system optimization problem, but
obtaining second order information can be very expensive, as
shown in the optimization of a DC motor. Future work must
consider methods to deal with this cost. Such methods may
include techniques for efficient estimation of coupling, or the
use of a priori coupling determination methods to identify prob-
lems in which the computational expense of computing the nec-
essary derivatives will be justified. In addition, the coupling
function depends on approximate Lagrange multipliers computed
under the assumption that activity does not change. Some sort
of active set strategy must be introduced to address the activity
assumptions. It may also be beneficial to consider individual
values within the vector C, in order to suspend particular varia-
bles within a given subsystem.

The Hierarchical Coupling Suspension strategy has been
shown to be promising in conjunction with the model coordina-
tion method. Future work may explore HCS for other MDO and
multilevel algorithms, such as collaborative optimization [29],
and the use of suspension strategies in analytical target cascad-
ing [30]. Substantial numerical testing remains to be done for
problems with increased complexity as well as with high func-
tion evaluation costs. The impact of problem scaling must be
also investigated, particularly in problems where the subsystem
objectives are not commensurate and their respective weights
are based on engineering intuition. The means to determine the
boundary between “weak” and “strong” coupling is also a criti-
cal consideration, currently based on engineering intuition,
which merits further investigation. Isolating system elements
that have weak coupling to the overall system from system
redesign iterations is common in practice. This paper offers a
more rigorous implementation of this practice and showed that
significant computational advantage may be gained for some
problems.

Table 3 Optimal values of design variables for DC motor

Variable Value

D (cm) 6.9
ds (cm) 0.69
L (cm) 8.3
Kp 0.81
Ki 5.6
Kd 0.00062
nd (rad=s) 99.8
Vd (V) 30.0
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Nomenclature
Ai¼ cross-sectional area of Bar #i, i¼ 1,…,6

Awa¼ cross-sectional area of armature wire for DC motor
Awf¼ cross-sectional area of field wire for DC motor

D¼ diameter of rotor diameter for DC motor
ds¼ slot depth for DC motor
Ei¼ elastic modulus in Bar #i, i¼ 1,…,6
Fi¼ force present in Bar #i, i¼ 1,…,6
fi¼ objective function associated with system i,

fi : Rqi ! R
@f=@x¼ gradient vector of f(x)—a row vector

F¼ objective function representing the supersystem

objective, F : RNþ
PN

i¼1
ni ! R

gi¼ inequality constraints associated with system i,
gi : Rqi ! Rmi

@g=@x¼ Jacobian matrix of g with respect to x; it is m� n, if g
is an m-vector and x is an n-vector

hi¼ equality constraints associated with system i,
hi : Rqi ! Roi

J¼ cost function for control of DC motor
k¼ (subscript only) denotes values at kth iteration

Kd¼ derivative gain for DC motor
Ki¼ Integral gain for DC motor
Kp¼ proportional gain for DC motor

li¼ horizontal span of Bar #i, i¼ 1,…,6
lij¼ number of interaction variables associated with sys-

tem interaction variable yij

L¼ rotor axial length for DC motor
Lwa¼ length of armature wire for DC motor
Lwf¼ length of field wire for DC motor
mi¼ number of inequality constraints associated with sys-

tem inequality constraint gi

nd¼ design speed of DC motor
ni¼ number of design variables associated with system

design variable xi

N¼ total number of systems
oi¼ number of equality constraints associated with system

equality constraint hi

qi¼ total number of design and interaction variables asso-
ciated with system i, qi ¼D

PN
j¼1 ðnj þ ljiÞ

dx̂j=dxi¼ gradient of optimal solution of system j with respect
to xi for the optimization problem with xi suspended

Rn¼ n-dimensional Euclidean (real) space
Vd¼ design voltage of DC motor

Vmax¼ maximum voltage requirement for DC motor
W¼ weight of DC motor
xi¼ vector of design variables associated with system i,

xi 2 Rni

y1, y2, y3¼ vertical span of links in structural example
yij¼ data transfer or interaction variable vector from system

i to system j where yij 2 Rlij ; yii 2 Rlii from system i to
itself represents system simulation (analysis) models

dDmax
¼ maximum allowable deflection at point D

Ci¼ optimization coupling function vector associated with
system design variable xi

qCu¼ density of copper wire in DC motor
qFe¼ density of iron core of DC motor

dDmax
¼ maximum allowable stress in Bar #i, i¼ 1,…,6

xerr¼ error in speed of DC motor
þ, �, k.k¼ matrix sum, matrix product, and Euclidean norm,

respectively
¼D ¼ definition
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