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Optimization of a ‘smart’ product requires optimizing the design of both the physical system, or arti-
fact, and its controller. If the artifact and control optimization are coupled, then a combined
approach is typically used in order to produce optimal solutions. The combined approach presents
certain disadvantages, however. This combined approach obviates a natural decomposition of the
problem into smaller design and control sub-problems that can be a disadvantage from a modeling
and solution practicality viewpoint. In this paper, it is shown that a modified sequential approach
utilizing a Control Proxy Function (CPF) can be used to produce optimal, or near-optimal, solutions
while allowing this decomposition. Two physical bases for CPFs are presented, natural frequency and
the controllability Grammian matrix, and their range of applicability is discussed. These concepts are
demonstrated, for a positioning gantry example and on an active/passive automotive suspension, to
be quite effective.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The design of many engineered systems requires both the de-
sign of the physical system, or artifact, and a controller. In the opti-
mal design and control of such ‘smart’ systems, it is necessary to
specify one or more objectives for the system. In some cases, a sin-
gle objective function may adequately capture the system’s perfor-
mance. In other cases, there are tradeoffs between different system
objectives. If two objectives are present, with one of these objec-
tives primarily identified with the artifact and a second with the
controller, then both an artifact objective function, fa, and a control
objective function, fc, may be formulated, subject to artifact
inequality and equality constraints, ga and ha, and control inequal-
ity and equality constraints, gc and hc. These objectives and con-
straints are functions of artifact and controller design variables,
denoted as da and dc, respectively. In the most general case, all
of the objectives and constraints may be functions of both sets of
variables, i.e., Fa = fa(da,dc), Ga = ga(da,dc), Ha = ha(da,dc), Fc = fc(da,
dc), Gc = gc(da,dc), and Hc = hc(da,dc). This optimal design and con-
trol problem, denoted as co-design, can present special challenges
when the design of the artifact and controller are dependent on
one another. In this situation, the solution of the bi-objective co-
design problem given by Eq. (1) is a Pareto set, with the various
Pareto points found by varying the weights wa and wc, and the
problem is said to be coupled.
ll rights reserved.
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min
da ;dc

wafaðda;dcÞ þwcfcðda;dcÞðda;dcÞ ð1Þ

subject to ga 6 0
haðda;dcÞ ¼ 0
gcðda;dcÞ 6 0
hcðda;dcÞ ¼ 0

When all of the objective and constraint functions depend on
both da and dc, coupling is said to be bi-directional. Many such
problems exist, such as the design of mechanisms subject to con-
straints on stress or deflection as they are moving. However, there
is also a large class of problems in which neither the artifact objec-
tive function nor the artifact constraints are functions of dc, i.e.,
Fa = fa(da), Ga = ga(da), and Ha = ha(da). These problems are said to
exhibit uni-directional coupling. The method presented in this pa-
per is developed for problems that exhibit uni-directional coupling.
It is also shown, through one of the examples, that it can be applied
to some problems with bi-directional coupling.

A variety of measures have been proposed to quantify the
strength of coupling [1–6]. These measures have been shown to
be related, though in most cases they are not commensurate with
one another [7–9]. In problems with uni-directional coupling, one
measure which is particularly useful is the coupling vector, Cv,
which is defined as follows [3,10].

Cv ¼
wc

wa

@fcðda;dcÞ
@da

þ @fcðda;dcÞ
@dc

ddc

dda

� �
ð2Þ

This vector is valid only at an optimal solution; however, at
a point not known to be optimal, an estimate can be com-
puted. The equation for the estimated coupling vector, denoted
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Fig. 1. Control proxy function problem formulation.
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as bCv , is identical to Eq. (2), but does not require the solution
of Eq. (1).

Coupled systems reported in the literature are in diverse
areas including structural systems with active control (e.g.,
[1,11]), micro-electrical mechanical systems, or MEMS (e.g.,
[12,13]), automotive systems (e.g., [10,14,15]), robotics and
mechatronics (e.g., [16–20]), and various types of mechanisms
and machine tools (e.g., [21–24]). In robotic applications, typical
objectives for the artifact design are minimizing weight or min-
imizing deflection. Controller objectives may be minimizing
tracking errors for a particular trajectory, overshoot, or settling
time [25]. In these problems, speed and accuracy are in conflict;
mechanisms with lower inertia are more flexible, resulting in a
fast response but lower accuracy, while a higher inertia will
produce a stiffer mechanism that is more accurate but results
in lower speeds [19]. Many applications, however, require both
high speed and high accuracy. Therefore, design of such systems
must consider the coupling between the artifact and control
objectives [26].

It has been shown that a simple sequential optimization, in
which the artifact is first optimized and then the optimal control
is found for that artifact, does not find the optimum for the system
[27,28]. Combined optimization methods such as a simultaneous
strategy, in which both the artifact and control are optimized to-
gether, will produce system-optimal solutions, as demonstrated
in [27,28]. The larger combined problem increases computational
complexity, and may require closer coordination of modeling ef-
forts from different groups in the organization. Furthermore, while
some methods such as pseudo-spectral methods [29] can be used
for a combined problem, classical optimal control techniques can
no longer be used when the problem is not formulated as a purely
optimal control problem [8].

Previous work has shown that the use of a Control Proxy Func-
tion (CPF) can provide optimal, or near-optimal, solutions to the
co-design problem without the disadvantages seen in the com-
bined optimization techniques, and has set forth the mathematical
conditions under which such a CPF is effective [8,9]. In this paper,
the work described in [30] is expanded, both theoretically and in
the examples shown. It is shown that, in addition to the cases de-
scribed in [30], it is possible to formulate a CPF based on the con-
trollability Grammian matrix for some LQR problems, based on the
theoretical developments presented in [9]. It is also shown,
through the development of an automotive suspension example,
that while the method was developed under the assumption of
uni-directional coupling, it may also be used in some cases where
bi-directional coupling is present.

2. Optimization of coupled systems using a Control Proxy
Function (CPF)

In order to preserve the functional decomposition of the co-
design problem while realizing optimal or near-optimal solutions,
a modified sequential optimization strategy is proposed. In this
strategy, the original artifact objective function, fa, is augmented
with a Control Proxy Function (CPF), representing the system’s
ease of control, as shown in Fig. 1. The CPF, denoted as v, is a func-
tion only of the artifact design variables, da. The optimization prob-
lem is then formulated as follows:

min
da

f 0aðdaÞ ¼ w1faðdaÞ þw2vðdaÞ ð3Þ

subject to gaðdaÞ 6 0
haðdaÞ ¼ 0

where w1 and w2 are positive weights representing the relative
importance of the artifact objective and the CPF, followed by the
control design problem
min
dc

f c d�a;dc
� �

ð4Þ

subject to gc d�a;dc
� �

6 0
hc d�a;dc
� �

¼ 0

where d�a ¼ argminf 0aðdaÞ.
The success of the method depends on the selection of an

appropriate CPF. A well-chosen CPF, which effectively captures
the fundamental physical limitations of the system, will result in
solutions that are close to the Pareto optimal points found by a
simultaneous formulation, while a poorly chosen CPF will yield
solutions far from system optimality.

The theoretical properties of an effective CPF have been studied,
and four theorems describing appropriate CPFs have been proven
[8,9]. These theorems are summarized here as follows:

1. If Cv is parallel to rv at all points, then the CPF solution set
will coincide with the Pareto frontier. A CPF satisfying this
condition is said to be perfect.

2. CPF solution points will approach the Pareto frontier as n,
the angle between the estimate of the coupling vector bCv

and rv in the da-space, approaches zero; i.e., CPF solution
points will be close to the Pareto frontier when the angle n
is small.

3. If the control objective function, fc(da,dc), is monotonic with
respect to some element of da, then an effective CPF, v(da),
will have the same coordinate-wise monotonicity as fc with
respect to that element of da.

4. If the control objective function, fc(da,dc), has an uncon-
strained minimum in the da-space, then an effective CPF,
v(da), will obtain its minimum close to it.

In this paper, Theorem (1) will be particularly useful, as it can be
used to determine under what conditions the particular CPFs con-
sidered will produce optimal solutions. Theorem (2) will be used to
evaluate the solutions found when the CPF method is applied to an
example problem.

Having developed a theoretical basis for an effective CPF in
[8,9], a logical next step is to formulate specific CPFs for important
types of problems and evaluate them. Initial work in this area was
shown in [30] and expanded here. These specific CPFs are based on
physically meaningful system characteristics, specifically the natu-
ral frequency of the system and the controllability Grammian ma-
trix. The natural frequency is considered as the basis for a CPF



Fig. 2. Schematic of system controller.
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because previous work has shown that, in some cases, it can be
used as an effective proxy for a system’s ease of control (e.g.,
[30–33]). The use of natural frequency as a CPF is considered in
Section 3, along with an application to a simple positioning gantry.
The controllability Grammian matrix, Wc, will be considered as the
basis for a CPF because it has been successfully used for the loca-
tion of actuators (e.g., [34–36]). Furthermore, it has been shown
that, for some problem formulations, there is a relationship be-
tween Wc and the coupling vector Cv [37]. Since there is also a
relationship between Cv and an effective CPF, as outlined above,
this suggests that a CPF based on Wc will be perfect for some prob-
lems, and this is shown in [30]. In Section 4, the use of a CPF based
on the controllability Grammian is presented, and applied to the
design of a passive/active automotive suspension. These two types
of CPFs are neither exhaustive normutually exclusive; there could
be problems where the conditions are met for both a CPF based on
natural frequency and for a CPF based on the controllability Gram-
mian matrix. If this were the case, then either physical basis could
be chosen, based on the preference of the designer.

3. Control proxy function utilizing natural frequency

3.1. Problem formulation

The natural frequency has been successfully used to predispose
a system to effective control, suggesting that it can be used to for-
mulate an effective control proxy function in some cases. Natu-
rally, the question arises what those cases might be, and how
they can be identified. Here, three specific problem formulations
are presented, derived in [8,30], in which natural frequency can
be used in a perfect CPF. Those system characteristics that are com-
mon to all three problems are:

1. The co-design problem is formulated as in Eq. (1), and
exhibits uni-directional coupling.

2. The system is linear and dominated by second-order
dynamics. This system can be described, then, in the form
m€zþ b _zþ kz ¼ uðtÞ ð5Þ

where m, b, and k are functions of the design variables da,
parameters, and constants, z is the system output, and u(t)
is the forcing function; or alternatively in state-space form as

_x ¼ Axþ Bu ð6Þ

where

A ¼
0 1
� k

m � b
m

� �
ð7Þ

B ¼
0
1
m

" #
ð8Þ

x ¼
z
_z

� �
ð9Þ
The open-loop system is underdamped, i.e., the open-loop
eigenvalues are complex.
3. The matrix B is independent of the artifact design variables
da, i.e.,
@m
@da
¼ 0: ð10Þ
4. A state-feedback controller with gains K = [K1 K2], possibly
with a precompensator G, is applied to the system, as shown
in Fig. 2.
5. There are no active controller equality constraints hc(da,dc)
or strongly active controller inequality constraints gc(da,dc)
present. Weakly active controller inequality constraints may
be present, where a weakly active constraint is one which is
not satisfied as a strict equality but whose removal will
affect the system optimum [38].

In a second-order system, there are two eigenvalues, which are
complex conjugates. These eigenvalues can be fully described by
the frequency x and damping coefficient f of the system.

k1;2 ¼ �fx�x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q
ð11Þ

The natural frequency of the open-loop system will be denoted
as xn and the damping coefficient of the open-loop system as fn.
The frequency of the controlled, or closed-loop, system will be de-
noted as xc and the damping coefficient of the closed-loop system
will be denoted as fc. The open-loop and closed-loop frequencies
and damping coefficients for the second-order system subjected
to state-feedback control are given by the following equations
[39]:

xn ¼
ffiffiffiffiffi
k
m

r
ð12Þ

fn ¼
b

2
ffiffiffiffiffiffiffi
mk
p ð13Þ

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ K1

m

r
ð14Þ

fc ¼
bþ K2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðkþ K1Þ

p ð15Þ

These equations will be used to define three specific problem
formulations where v(da) = v(xn) is a perfect CPF. In each case,
additional necessary conditions are specified, relating to the damp-
ing of the system.

3.1.1. Control objective independent of damping
If the control objective Fc = fc(xc) is a function of the closed-loop

frequency xc of the system but is independent of the closed-loop
damping coefficient fc, then the CPF v = v(xn) will yield system-
optimal solutions to the simultaneous optimization problem. An
example of such a control objective is fc(xc) = tr, where tr ¼ 1:8

xc
is

the rise time of the closed-loop system [39]. For a second-order
system, xn is given by Eq. (12), and therefore the gradient of v is
given by

rv ¼ @v
@xn

@xn

@da
¼ @v
@xn

1
2

ffiffiffiffiffiffiffi
1

km

r
@k
@da

 !
ð16Þ

where k is a function of da. The closed-loop frequency of the system
is given by Eq. (14). Using Eq. (2), the coupling is found to be

Cv ¼
w2

w1

@fcðxcÞ
@xc

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðkþ K1Þm

s
@k
@da

 !
ð17Þ



Fig. 3. Configuration of positioning gantry system.
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If the CPF is perfect, the vector computed is the coupling vector
Cv, not the estimate bCv . It is possible, then, to express the coupling
vector Cv at the CPF solution as

Cv ¼
w2

w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

kþ K1

s
@fcðxcÞ
@xc

� �	
@v
@xn

� �� �
rv ð18Þ

and it can be seen that the coupling vector at the CPF point is equal
to a scalar quantity multiplied by the gradient of the CPF. From The-
orem 1, then, the CPF points will be Pareto optimal for the co-design
problem.

3.1.2. Control objective independent of imaginary component of
eigenvalues

If the control objective Fc = fc(fcxc) is a function of the real part
of the closed-loop eigenvalues (e.g., fc(fcxc) = ts, where ts is the set-
tling time of the closed-loop system), and the damping ratio fn of
the open-loop system is independent of da, then the CPF
v = v(xn) will yield system-optimal solutions to the simultaneous
optimization problem.

A similar procedure to that given above [8] can be used to de-
rive a relationship between the coupling vector and the gradient
rv. This relationship is found to be

Cv ¼
w2

w1

@fcðfcxcÞ
@ðxcfcÞ

b

2
ffiffiffiffiffiffiffi
km
p 1

@v
@xn

	� �
rv ð19Þ

Again, if the CPF is perfect, the vector computed is the coupling
vector Cv, not the estimate bCv . It can then be seen that the cou-
pling vector at the CPF point is equal to a scalar multiplied by
rv, where rv is given by Eq. (16). Therefore, from Theorem 1,
the CPF points will be Pareto optimal for the co-design problem.

3.1.3. Damping term b independent of da

If the controller objective Fc = fc(fc,xc) is an arbitrary function of
the closed-loop eigenvalues of the system, and the damping term b
in the system description is independent of da, i.e.,

@b
@da
¼ 0 ð20Þ

then the CPF v = v(xn) will yield system-optimal solutions to the
simultaneous optimization problem.

Yet again, as shown in [8], a relationship can be derived be-
tween the coupling vector and the gradient rv. This relationship
is found to be

Cv ¼
w2

w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

kþ K1

s
@fcðfc;xcÞ

@xc
� @fcðfc;xcÞ

@fc

bþ K2

2ðkþ K1Þ

� �
1=

@v
@xn

� �
rv

ð21Þ

Again, if the CPF is perfect, the vector computed is the coupling
vector Cv, not the estimate bCv . It can be seen that the coupling vec-
tor at the CPF point is equal to a scalar multiplied byrv, whererv
is given by Eq. (16). Therefore, from Theorem 1, the CPF points will
be Pareto optimal for the co-design problem.

3.2. Illustrative example: positioning gantry system

Consider the system shown in Fig. 3, representing a simple
model of a positioning gantry. In this system, a mass M is con-
nected to a fixed surface by a linear spring with constant ks. A flex-
ible belt connects to the mass and wraps around a pulley with
radius r, which is mounted on a DC motor with armature resistance
Ra and motor constant kt. The displacement of the mass from its
original position is Z. The system can be modeled in the form of
Eqs. (5)–(9), where m ¼ MrRa

kt
; b ¼ kt

r , and k ¼ ksrRa
kt

. A state-feedback
controller with gains K = [K1 K2] and precompensator G is applied
to the system, as shown in Fig. 2, to generate the input voltage u
to the motor. The steady-state voltage is denoted as uss. Values of
parameters are given as kt = 10.0 N m/A, r = 5.0 cm, M = 2.0 kg,
and uss = 10.0 V.

The following objectives and constraints are selected:

faðRa;ksÞ ¼ �Zss ð22Þ

subject to simple bounds on the artifact design variables:

2:0 kX 6 Ra 6 3:0 kX ð23Þ
0:5 N=mm 6 ks 6 5:5 N=mm ð24Þ

where Zss is the steady-state displacement, given by

Zss ¼
usskt

rRaks
ð25Þ

The controller objective is the 1% settling time for the system, ts,
which is given by

fcðRa; ks;K1;K2;GÞ ¼
4:6MRar

ktðrK2 þ ktÞ
ð26Þ

with constraints on the overshoot, Mp, and the peak motor voltage,
up, as given below.

Mp 6 5% ð27Þ
up 6 12:5 V ð28Þ

The optimization problem is formulated as in Eqs. (3) and (4),
using the natural frequency of the open-loop system as the CPF.
Since the damping term b is not a function of the artifact design
variables, it is expected that the solutions found will be system-
optimal, as shown in Section 3.1.

This problem was solved using Matlab’s fmincon function for a
variety of weights w1 and w2, producing the results for the Pareto
curve shown in Fig. 4. For each point, rv and bCv were calculated.
Using these vectors, the angle n was calculated, and it was found
that n = 0 for all points. Thus, based on Theorem (2), it is known
that these solutions are system-optimal. Note that this was deter-
mined without the need to solve the simultaneous problem in Eq.
(1). While there are only small computational gains in this case, the
primary advantage of this solution method for this problem is that
it allows the design and control optimizations to be carried out
separately. The designer of the gantry system then would not need
to also design the control system, and that task could be left to a
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specialist in controls while ensuring the system optimal design for
the gantry and its controller.

4. Control proxy function utilizing the controllability Grammian
matrix

4.1. Problem formulation

A CPF using open-loop eigenvalues will not be effective when
the matrix B in Eq. (6) is sensitive to the artifact design variables
da, since open-loop eigenvalues cannot be used to model that sys-
tem behavior. For problems of this type, the CPF must be based on
some other fundamental metric of the system which is capable of
modeling both the free and forced response characteristics of the
system. Since the controllability Grammian matrix Wc incorpo-
rates both the free and forced response characteristics of a system,
it is logical to consider its use in a CPF. Here, we will demonstrate
that the controllability Grammian can be used to formulate a CPF
in some cases. Additional cases in which the controllability Gram-
mian can be used are given in [8].

In the development of the CPF based on the controllability
Grammian, it is assumed that the system dynamics are linear
and time-invariant, and can be described in state-space form, i.e.,
by Eq. (6). The system may be of arbitrarily high order, rather than
second-order as in the previous section. For this system, the time-
varying controllability Grammian matrix is given by [40]

Wcðtf Þ ¼
Z tf

0
eAtBBT eAT tdt ð29Þ

and the steady-state controllability Grammian matrix is given by

W1
c ¼ lim

tf!1

Z tf

0
eAtBBT eAT tdt ð30Þ

The CPF that will be first considered is:

v ¼ xT
f W�1

c ðtf Þxf ð31Þ

where xf is the final state of the system, and tf is the time at which it
reaches that state.

4.1.1. Control effort as control objective function
The CPF given by Eq. (31) will produce optimal solutions when

the control objective function, fc, is the control effort necessary to
move the system from its zero state to its final state, xf, at a
specified final time, tf, where tf is a parameter. The final state, xf,
may be a parameter or it can be a function of the artifact design
variables, da. An example would be a positioning device in an auto-
mated assembly system; parts to be assembled typically must be
placed at their destination at a particular time.

The objective function, fc, is given by

fc ¼
Z tf

0
ðuðtÞÞ2dt: ð32Þ

The controllability Grammian matrix can be used to construct a
lower bounding function for the control effort, which is given by
[40]

fc P xT
f W�1

c ðtf Þxf ð33Þ

If an optimal controller is used, then the optimal value of fc is
given by

f �c ¼ xT
f W�1

c ðtf Þxf ; ð34Þ

and it is evident that the solutions found using this CPF will be opti-
mal since v = fc. Furthermore, it has been shown that [37], for this
problem,

Cv ¼
wc

wa

@

@da
xT

f W�1
c ðtf Þxf


 �
; ð35Þ

and thus Theorem (1) confirms that the CPF given in Eq. (31) will
produce optimal solutions.

4.1.2. Time as control objective function and control effort as
constraint

The CPF given by Eq. (31) will produce optimal solutions when
the control objective function is the time, tf, necessary to move the
system from its zero state to a final state, xf, subject to a limit on
the available control energy, Emax, where Emax is a parameter. Again,
xf may be a parameter or a function of da.

The objective function, fc, and constraint, gc, are given by

fc ¼ tf ð36Þ

gc ¼
Z tf

0
ðuðtÞÞ2dt � Emax 6 0 ð37Þ

The coupling vector for this problem is parallel to that for the
problem where control effort is the objective function. Therefore,
the coupling vector for this problem will also be parallel to rv,
where v is given by Eq. (31). Using Theorem (1), it can be seen that
the use of this CPF will result in optimal solutions.
4.1.3. Control proxy function for the case of Linear Quadratic Regulator
(LQR)

The infinite-time LQR problem is designed to find the optimal
control signal u(t) to transition a system from an initial state
x0 = x(0) to the zero state. The optimal control signal is defined
as the one which minimizes the cost function

J ¼
Z 1

0
ðxðtÞT QxðtÞ þ uðtÞT RuðtÞÞdt: ð38Þ

It is well-established [40] that the optimal solution is

uðtÞ ¼ �KxðtÞ ð39Þ
K ¼ R�1BT X ð40Þ

where the matrix X is the positive semi-definite solution of the
algebraic Riccati equation

AT Xþ XA� XBR�1BT Xþ Q ¼ 0 ð41Þ

and the optimal value of J is given by the equation

J� ¼ xT
0Xx0: ð42Þ



Fig. 5. Quarter-car model of combined active and passive suspension.

Table 1
Automotive suspension parameters.

r0 r1 r2 ms (kg) mus (kg) kus (kN/m)

8.29e�4 414.7 41.47 2000 184 520
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As shown in [8,37], the coupling vector for the LQR problem can
be related to the controllability Grammian for the specific choice of
the state weighting matrix Q = cBBT, which is commonly used in
loop-transfer recovery. For this particular choice of Q, it can be
shown that the matrix X can be expressed in terms of the control-
lability Grammian as [8,37]:

X ¼ cA�T AW1
c ð43Þ

and, therefore, the optimal performance is

J� ¼ cxT
0A�T AW1

c x0: ð44Þ

This allows the coupling to be derived as

Cv ¼ c
wc

wa

@ xT
0A�T AW1

c x0ð Þ
@da1

@ xT
0A�T AW1

c x0ð Þ
@da2

..

.

@ xT
0A�T AW1

c x0ð Þ
@dan

2666666664

3777777775

T

ð45Þ

In the most general LQR case, the initial state x0, W1
c , and A all

depend on da. For this case, a perfect CPF will be one with a gradi-
ent parallel to the coupling vector. If a CPF is chosen to be

vðdaÞ ¼ xT
0A�T AW1

c x0 ð46Þ

then the gradient of this CPF is given by

@v
@da
¼ @

@da
bmxT

0A�T AW1
c x0


 �
¼

@ xT
0A�T AW1

c x0ð Þ
@da1

@ xT
0A�T AW1

c x0ð Þ
@da2

..

.

@ xT
0A�T AW1

c x0ð Þ
@dan

2666666664

3777777775

T

ð47Þ

and it can be shown that

@v
@da
¼ wc

wa
Cv ð48Þ

and therefore the CPF is perfect for this problem.

4.2. Illustrative example: passive/active automotive suspension

Consider the automotive suspension for a quarter-car model
shown in Fig. 5. This suspension is modeled in state-space form
with both a control input, u, and an external disturbance, w, by
the following equation:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ GwðtÞ ð49Þ

where

A ¼

0 1 0 0
� kus

mus
� cs

mus

ks
mus

cs
mus

0 �1 0 1
0 cs

ms
� ks

ms
� cs

ms

26664
37775 ð50Þ

B ¼ 0; 1
mus
; 0; � 1

ms

h iT
ð51Þ

G ¼ �1; 0; 0; 0½ �T ; ð52Þ
the set of states, x(t), is given by

xðtÞ ¼ ½zusðtÞ � zgðtÞ; _zusðtÞ; zsðtÞ � zusðtÞ; _zsðtÞ�T ð53Þ

and the ground velocity disturbance w(t) is characterized as
zero-mean white noise with a Gaussian distribution, i.e., E{ _zg(t) _zg

(s)} = Wd(t � s) [41].
The objective functions for the optimization of this system will
be the control effort, Ju, and the ride quality, Jq, for the suspension
design. As discussed in [41], the ride quality includes the mean
square sprung mass acceleration, mean square tire deflection
(wheel hop), and mean square suspension stroke (rattle space).
These objective functions, and the total system objective, J, are
given in Eqs. (54)–(56), where r0, r1, r2, and r3 are weighting factors
selected by the designer of the suspension system based on the de-
sired characteristics of the suspension, e.g., a ‘sporty’ suspension
versus a luxury vehicle’s suspension. While the weighting factor
r3 will be varied to produce multiple designs, r0, r1, and r2 will be
set as parameters. These, and other parameters, are given in
Table 1.

Jq ¼ E lim
T!1

1
T

Z T

0
ðr0ð€zsÞ2 þ r1ðzus � zgÞ2 þ r2ðzs � zusÞ2Þdt

� 

ð54Þ

Ju ¼ E lim
T!1

1
T

Z T

0
u2dt

� 

ð55Þ

J ¼ Jq þ r3Ju ð56Þ

The ride quality can be expressed in terms of the state variables
as

Jq ¼ E lim
T!1

1
T

Z T

0
ðr0ð _x4Þ2 þ r1ðx1Þ2 þ r2ðx3Þ2Þdt

� 

ð57Þ

By substituting for _x4 from Eqs. (49)–(52), and expanding terms,
the total system objective, J, can be written in standard LQR form as

J ¼ E lim
T!1

1
T

Z T

0
ðxT Qxþ 2xT Suþ uT RuÞdt

� 

ð58Þ
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where the weighting matrix, Q, is given by

Q ¼

r1 0 0 0

0 r0
cs
ms


 �2
�r0

csks
m2

s
�r0

cs
ms


 �2

0 �r0
csks
m2

s
r2 þ r0

ks
ms


 �2
r0

csks
m2

s

0 �r0
cs
ms


 �2
r0

csks
m2

s
r0

cs
ms


 �2

266666664

377777775 ð59Þ

and the matrices R and S are given by

R ¼ r3 þ
r0

m2
s

� �
ð60Þ

S ¼ 0; � r0cs

m2
s
; r0ks

m2
s
; r0cs

m2
s

h iT
ð61Þ

For a given passive suspension design, it is then possible to find
the optimal active suspension. The optimal gains for such a sus-
pension are given by [42,43]

K ¼ R�1ðST þ BT XÞ ð62Þ

where the matrix X is the positive semi-definite solution to the
Riccati equation

ðA� BR�1STÞT Xþ XðA� BR�1STÞ � XBR�1BT Xþ Q � SR�1ST ¼ 0:

ð63Þ

The optimal performance, J⁄, can be found from the relation

J� ¼ trðQPþ KT RKPÞ ð64Þ

where P is the positive semidefinite solution to the Lyapunov
equation

ðA� BR�1ST � BKÞPþ PðA� BR�1ST � BKÞT þ GT G ¼ 0: ð65Þ

This suspension is optimized three times, using a sequential,
simultaneous, and CPF formulation, and the results are then
compared.

4.2.1. Sequential optimization of automotive suspension
In the sequential optimization problem, the passive suspension

is first optimized for ride quality, with the artifact design vari-
ables chosen as ks and cs. For this problem, Jq is calculated with
the controller gains, K, set to zero, and therefore it is a function
only of the artifact design variables. The optimization problem
is constrained by upper and lower bounds on both ks and cs. This
also ensures that all of the eigenvalues of A must be stable, i.e.,
they must all lie in the left half of the complex plane. After this
optimization is performed, the optimal gains for the active sus-
pension design are found for different values of r3, producing a
set of optimal controllers which show a trade-off between ride
quality and control effort. This formulation is expressed by the
following equations:

min
ks ;cs

Jqpas
ðks; csÞ ð66Þ

subject to 1:6 kN=m 6 ks 6 160 kN=m ð67Þ

0:16 kN s=m 6 cs 6 16 kN s=m ð68Þ

followed by

min
K

Jq k�s ; c
�
s ;K

� �
þ r3Ju k�s ; c

�
s ;K

� �
ð69Þ

where k�s ; c
�
s ¼ argminJqpas

ðks; csÞ; Jqpas
¼ trðQPpasÞ, and Ppas solves the

Lyapunov equation

APpas þ PpasAT þ GT G ¼ 0: ð70Þ
4.2.2. Simultaneous optimization of automotive suspension
In the simultaneous optimization, the total system objective, J,

will be optimized for different values of r3. In this case, the design
variables for the optimization are the artifact design variables, ks

and cs, and the controller gains, K. The upper and lower bounds
on the spring constant and damping are also included in this for-
mulation, and the controlled system is required to be stable. In this
case, the objective function is dependent on all variables, and the
optimization problem is expressed as:

min
ks ;cs ;K

Jqðks; cs;KÞ þ r3Juðks; cs;KÞ ð71Þ

subject to 1:6 kN=m 6 ks 6 160 kN=m ð72Þ
0:16 kN s=m 6 cs 6 16 kN s=m ð73Þ
gðks; cs;KÞ ¼ realðeigðA� BKÞÞ 6 0 ð74Þ

As in the sequential formulation, a set of designs is obtained which
show a trade-off between the ride quality and control effort.

4.2.3. Optimization of automotive suspension using a CPF
It initially appears that this problem may not be amenable to

the use of a CPF, since both the ride quality, Jq, and the control ef-
fort, Ju, depend on the artifact and controller design variables. Be-
cause of this dependence, this system presents bi-directional
coupling, in contrast to the positioning gantry, while the develop-
ment of the CPF method was based on the assumption of uni-direc-
tional coupling. However, the ride quality can be separated into
two components, with one of those components dependent only
on the artifact design variables.

Assume that the matrix P is expressed as the sum of two matri-
ces, Ppas and Pact, where Ppas is defined as in Eq. (70). Then, the ac-
tive component of P satisfies the equation

ðA� BR�1ST � BKÞPact þ PactðA� BR�1ST � BKÞT

� ðBKPpas þ PpasKT BTÞ ¼ 0 ð75Þ

This allows the ride quality to be expressed as two separate
components, one purely passive and one combining active and pas-
sive characteristics, where

Jq ¼ Jqact
þ Jqpas

¼ trðQPactÞ þ trðQPpasÞ ð76Þ

and the objective function, J, can be decomposed into two functions,
fa(da) and fc(da,dc), as follows:

faðdaÞ ¼ Jqpas
ðks; csÞ ð77Þ

fcðda;dcÞ ¼ Jqact
ðks; cs;KÞ þ r3Juðks; cs;KÞ ð78Þ

By decomposing the problem in this way, it can be shown that a CPF
may be effective, although the optimization does not exactly match
any of the formulations where a perfect CPF is known to exist. Since
the problem does not match any of the cases that led to a perfect
CPF, it cannot be assumed that such a perfect CPF necessarily exists.
Because one component of fc is the control effort, however, it can be
postulated that a CPF based on the controllability Grammian matrix
will produce results that are close to optimal.

The optimization problem using a CPF is formulated as follows:

min
ks ;cs

Jqpas
ðks; csÞ þ r4vðks; csÞ ð79Þ

subject to 1:6 kN=m 6 ks 6 160 kN=m ð80Þ
0:16 kN s=m 6 cs 6 16 kN s=m ð81Þ

followed by

min
K

Jq k�s ; c
�
s ;K

� �
þ r3Ju k�s ; c

�
s ;K

� �
ð82Þ

subject to gðks; cs;KÞ ¼ realðeigðA� BKÞÞ 6 0 ð83Þ
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where the CPF is chosen as

vðks; csÞ ¼
1

det W1
c

� � ð84Þ

This CPF is chosen in order to ensure that the suspension is control-
lable. The CPF will be minimized when the determinant of the con-
trollability Grammian is at its maximum, which indicates that the
system requires less control effort in order to meet the control
objectives. This optimization can be performed for various different
combinations of r4 and r3; here, we perform the optimization for
two fixed values of r4. For each value of r4, we obtain a passive de-
sign, and then vary r3 to explore the active performance of that pas-
sive design.
4.2.4. Comparison of optimal designs
Results of these three optimization problems are shown in Fig. 6

for the cases where r4 = 2.5e�30 and r4 = 3.5e�30, where these val-
ues of r4 were empirically chosen to represent the cases of more
expensive and less expensive control. The values of the variables
and objectives are also given in Table 2. In the case of expensive
control, i.e., r3 ?1, the results of sequential and simultaneous
optimizations converge, as do the results for both of the optimiza-
tions using a CPF. The optimal performance of the suspension de-
signed using a CPF is an improvement over the sequential
solution, though it does not match the simultaneous solution for fi-
nite values of r3. For these high values of r3, the better of the two
CPF solutions is that with the higher value, i.e., r4 = 3.5e�30.

When the control cost is lower, then the sequential and simul-
taneous designs show a greater difference. The suspension de-
signed sequentially is unable to match the results of the
Table 2
Comparison of optimal designs for r3 = 2.66e�7.

Sequential Simultaneous

ks (kN/m) 36.0 9.26
cs (kN s/m) 16.0 16.0
K 989:1

155:7
�2087
�1763

2664
3775

T �1394
167:5
�6281
�3648

2664
3775

T

Jq 34.52 34.28
Ju 2.030e7 1.460e7

Fig. 6. Optimal performance of
simultaneous optimization. Again, the solution found using a CPF
represents an improvement over the sequential solution; it is ex-
tremely close to the optimal results found from the simultaneous
formulation.

As the value of r3 is decreased, the relative quality of the two
CPF solutions reverses. As control becomes less expensive, the
solution found with a lower weight on the CPF, i.e., r4 = 2.5e�30,
shows better results. In fact, as control becomes even less expen-
sive, the solution found with the greater value of r4 is farther from
the optimal results than the sequential solution.

The choice of r4, then, should be made based on the designer’s
expectations about the cost of control; if control is expected to
be ‘cheap’, i.e., r3 ? 0, then r4 should be relatively small. If control
is expected to be expensive, then r4 should be larger.

Again, the advantage of solving the optimization problem using
a CPF is that it allows the design and control optimizations to be
carried out separately. The designer of the automotive suspension
system then would not need to also design the control system, and
in fact would not even need to know what type of control would be
designed; he or she would only need to know whether control was
expected to be expensive or cheap in order to choose an appropri-
ate weight for the CPF (see Table 2).

Consider a weight of r3 = 2.66e�7 for all of the optimization for-
mulations. For this weight, each of the methods of solution pro-
duces the same result for the optimal value of cs, which is the
upper bound on the variable. In contrast, each method yields a dif-
ferent result for the stiffness of the spring. The sequentially opti-
mized design has a relatively stiff spring, with a softer spring
found in the simultaneous solution. The spring stiffness for both
of the CPF problems is less than that of the simultaneous formula-
tion, which increases the controllability and thus decreases the
CPF with r4 = 2.5e�30 CPF with r4 = 3.5e�30

18.1 10.9
16.0 16.0

78:01
163:0
�3879
�2660

2664
3775

T �992:2
166:6
�5655
�3408

2664
3775

T

33.84 34.09
1.803e7 1.541e7

active/passive suspension.
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control effort required. All four sets of results have similar values
for the ride quality, with the highest and lowest ride quality differ-
ing by less than 2%; however, there are significant differences of up
to 39% in the control effort required to achieve this ride quality.
The greatest amount of control effort is required by the sequen-
tially optimized design, and the least control effort for the simulta-
neously optimized design. The two designs found through
optimization using a CPF are both better than the sequentially opti-
mized design; for the CPF design with r4 = 2.5e�30, the control ef-
fort is 23% greater than that for the simultaneous design,
representing a substantial improvement over the sequential de-
sign. By increasing the weight on the CPF to r4 = 3.5e�30, the con-
trol effort required can be further reduced, to only 5% greater than
that required by the simultaneous design. This demonstrates that a
solution method using a CPF can provide improved results over a
simple sequential solution, while retaining the decomposition
advantages of the sequential solution method.
5. Concluding remarks

In this paper, a new method of solution for co-design problems,
based upon a sequential optimization using a Control Proxy Func-
tion (CPF) is presented. The intent of the CPF method is to provide
solutions that are identical with, or close to, the Pareto optimal
solutions to the co-design problem, while allowing the problem
to be decomposed into an artifact design problem and a control
design problem. It may be desirable in some cases to formulate
co-design problems without performing this decomposition,
particularly when a single metric can adequately capture the sys-
tem’s desired performance. However, decomposing the system into
the two domains of artifact and controller allows the co-design
problem to be more easily formulated and solved by experts in
each of the functional areas of artifact design and control design,
and is particularly useful when there is some degree of separation
naturally present in the system.

The key to the effectiveness of this method is the choice of an
appropriate CPF, and we have proposed appropriate CPFs for spe-
cific problem formulations. These CPFs are based on the system’s
natural frequency and on the controllability Grammian matrix. In
the case of both CPFs, we have assumed that the system of interest
is linear and time-invariant. For a CPF based on natural frequency,
the system was also assumed to be second-order, though the CPF
based on the controllability Grammian applies to systems of arbi-
trarily high order. One of these CPFs, based on the natural fre-
quency, was used in the optimization of a simple positioning
gantry and its controller, and was shown to provide optimal solu-
tions. Similarly, a CPF based on the controllability Grammian ma-
trix was used in the optimization of an automotive suspension
with both passive and active components. While these systems
are relatively simple, they show that the method can be quite
effective. In larger-scale systems, the use of a CPF could be incorpo-
rated into a large all-in-one optimization problem, or multiple CPFs
could be used for individual components within an optimization
structure incorporating decomposition and coordination. Use of
the method on such larger scale systems should be a subject of fu-
ture work, as should the integration of the method into engineer-
ing practice in industry. Such use within industry will require
several advances. These include the extension of the method to
cover a wider range of problems and the formulation of a clear,
easily followed procedure by which a designer may check to en-
sure that the method is appropriate and select the proper CPF for
the design problem under consideration. Such a procedure could
take the form proposed in [8], in which a series of system and
problem characteristics were checked to ensure that the method
was appropriate for the particular problem.
These CPFs are not exhaustive; it is possible to formulate and
evaluate additional CPFs, based on open-loop eigenvalues, the con-
trollability Grammian, and possibly other system metrics, and the
development of such CPFs should be the subject of future work.
These CPFs could be used to produce optimal solutions for a variety
of problems not considered here, such as Linear Quadratic Gauss-
ian (LQG) control, vehicle steering applications, trajectory control,
sensor placement, and power management. In some cases, such
as the automotive suspension demonstrated here, it may not be
possible to develop a simple CPF that provides optimal results.
However, one can conjecture that a CPF based on the controllabil-
ity and observability Grammians will produce results that are
near-optimal for a variety of problems, since they provide mea-
sures of how easily a system is controlled and how easily the states
are estimated. This conjecture should also be investigated in future
work, and it should be determined how effective a CPF based on
the controllability and observability Grammians will be for various
types of co-design problems. Future work should also investigate
ways in which this technique could be applied to problems with
bi-directional coupling, as well as non-linear systems with both
uni-directional and bi-directional coupling, and the technique
should be applied to larger scale problems of interest.
Acknowledgements

This work was partially supported by NSF Grant # 0625060 and
by the Automotive Research Center (ARC), a US Army Center of
Excellence in Modeling and Simulation of Ground Vehicles, head-
quartered at the University of Michigan. This support is gratefully
acknowledged.
References

[1] Haftka R, Martinovic Z, Hallauer Jr W, Schamel G. An analytical and
experimental study of a control system’s sensitivity to structural
modifications.. AIAA J 1986;25:310–5.

[2] Bloebaum C. Coupling strength-based system reduction for complex
engineering design. Struct Optim 1995;10:113–21.

[3] Fathy H, Papalambros PY, Ulsoy AG. On combined plant and control
optimization. In: 8th Cairo University international conference on
mechanical design and production. Cairo, Egypt: Cairo University; 2004.

[4] Alyaqout SF, Papalambros PY, Ulsoy AG. Quantification and use of system
coupling in decomposed design optimization problems. In: Proceedings of the
ASME IMECE 2005. ASME, Orlando, FL; 2005. p. 95–103, paper number
IMECE2005-81364.

[5] Alyaqout SF, Papalambros PY, Ulsoy AG. Coupling in design and robust control
optimization. In: Proceedings of the European control conference. Kos, Greece;
2007.

[6] Alyaqout SF, Peters DL, Papalambros PY, Ulsoy AG. Generalized coupling
management in complex engineering systems optimization. ASME J Mech Des
2011;133(9).

[7] Peters DL, Papalambros PY, Ulsoy. On measures of coupling between the
artifact and controller optimal design problems. In: Proceedings of the ASME
design engineering technical conference & computers in engineering
conference. ASME, San Diego, CA; 2009, paper number DETC 2009-86868.

[8] Peters DL. Coupling and controllability in optimal design and control, PhD
thesis. University of Michigan, Ann Arbor, MI; April 2010.

[9] Peters DL, Papalambros PY, Ulsoy AG. Control proxy functions for sequential
design and control optimization. ASME J Mech Des 2011;133(9).

[10] Fathy HK, Reyer JA, Papalambros PY, Ulsoy AG. On the coupling between the
plant and controller optimization problems. In: Proceedings of the American
control conference. Arlington, VA: IEEE; 2001. p. 1864–9.

[11] Rao S, Pan T. Modeling, control, and design of flexible structures: a survey.
Appl Mech Rev 1990;43:99–117.

[12] Carley L, Ganger G, Guillou D, Nagle D. System design considerations for
MEMS-actuated magnetic-probe-based mass storage. IEEE Trans Magn
2001;37:657–62.

[13] Oldham K, Huang X, Chahwan A, Horowitz R. Design, fabrication and control of
a high-aspect ratio microactuator for vibration suppression in a hard disk
drive. In: Proceedings of the IFAC world congress. Prague; 2005.

[14] Alyaqout SF, Papalambros PY, Ulsoy AG. Combined design and robust control
of a vehicle passive/active suspension. In: Proceedings of the European control
conference. Kos, Greece; 2007.

[15] Alyaqout SF, Papalambros PY, Ulsoy AG. Combined design and robust control
of a vehicle passive/active suspension. Int J Veh Des 2012;59(4):315–30.



418 D.L. Peters et al. / Mechatronics 23 (2013) 409–418
[16] Alyaqout SF, Papalambros PY, Ulsoy AG. Combined robust design and robust
control of an electric DC motor. In: ASME international mechanical
engineering congress and exposition. ASME, Chicago, IL; 2006.

[17] Alyaqout SF, Papalambros PY, Ulsoy AG. Combined robust design and robust
control of an electric DC motor. IEEE/ASME Trans Mech 2011;16(3):574–82.

[18] Ravichandran T, Wang D, Heppler G. Simultaneous plant-controller design
optimization of a two-link planar manipulator. Mechatronics 2006;16:233–42.

[19] Zhu Y, Qiu J, Tani J. Simultaneous optimization of a two-link flexible robot arm.
J Robotic Syst 2001;18(1):29–38.
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