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a b s t r a c t

Design of smart products requires optimization of both the physical device, or artifact, and its controller.
While some components of coupling can be computed a priori, the existence and strength of coupling
between these problems over the entire Pareto frontier currently cannot be computed until they are
solved. If coupling is expected to be present, then the problem is often solved as a simultaneous, or
all-in-one, optimization. This solution process is more difficult, computationally intensive, and opera-
tionally inconvenient than a sequential solution method. Consequently, knowing in advance whether
coupling is weak or nonexistent is useful.

In this paper, a general formulation for the control problem is given, which includes components for the
speed of response, accuracy of the response, and control effort. While this general formulation does not
permit a priori determination of coupling, the existence and strength of coupling can be determined for
several special cases, which represent common and important control problems. Controllability is a prop-
erty of the uncontrolled system and does not depend on the controller design. These relationships
between coupling and controllability can be utilized in problem formulation, choice of solution method,
and development of Control Proxy Functions (CPFs) for each of these problem types. The concepts devel-
oped are demonstrated via design of a positioning gantry and a MEMS actuator.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The development of ‘smart’ products will solve a wide range of
problems in diverse fields. Some applications are structures with
active control [1–3], mechatronics [4–7], mechanisms [8–13],
microelectrical mechanical systems (MEMS) [14–16], and chemical
processing applications [17,18]. These applications include impor-
tant systems such as robotics [19], aeronautical structures,
machine tools, sensors and automotive applications [20,21]. Such
smart products consist of both a physical system, called a plant
or artifact, and a controller. To effectively design these products,
the possible existence of coupling, or interdependence in the
design of the artifact and of the controller, must be considered.
Since both uncertainty in system parameters and more demanding
performance requirements are associated with more strongly cou-
pled systems [22], the quest for greater efficiency and more robust
designs requires better techniques for the identification and man-
agement of coupling. Knowledge about coupling provides insight
into the nature of the tradeoffs present and guides the choice of
an appropriate solution method.

In the optimal design and control, i.e., co-design of these sys-
tems, it is necessary to specify one or more objectives for the sys-
tem. In some cases, a single objective function may adequately
capture the systems performance. However, in other cases there
are tradeoffs between different system objectives, each of which
is critical in the overall system performance. If two objectives are
present, with one of them primarily identified with the artifact
and the other with the controller, then the problem formulation
presented in this paper is appropriate for the system. In the formu-
lation presented here, there are two objective functions. One objec-
tive function f a applies to the artifact (e.g., minimize mass), and the
other objective f c applies to the controller (e.g., minimize settling
time). The full set of variables consists of artifact design variables
da and controller design variables dc. Typically, there are also
inequality and equality constraints associated with both the arti-
fact and controller design problems, i.e., ga;ha and gc;hc, respec-
tively. In the case of bi-directional coupling, both objective
functions and sets of constraints depend on both sets of variables.
In uni-directional coupling, the artifact objective function and
constraints are functions only of the artifact variables, while the
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controller objective function and constraints depend on both arti-
fact and controller variables. In this work, only uni-directional cou-
pling will be addressed. This does exclude many systems; however,
there are systems of interest which exhibit uni-directional cou-
pling, and it is a useful starting point for gaining insight into the
more general problem.

The co-design problem may be formulated as a combination of
the individual objectives. For example, with an objective which is a
linear combination, with weights applied to the individual objec-
tives, the co-design problem is formulated as follows:

min
da ;dc

waf a dað Þ þwcf c da;dcð Þ ð1Þ

subject to

ga dað Þ 6 0 ð2Þ
ha dað Þ ¼ 0 ð3Þ
gc da;dcð Þ 6 0 ð4Þ
hc da;dcð Þ ¼ 0 ð5Þ

Two issues involved in the optimal co-design of coupled sys-
tems are: (a) identification of tradeoffs between the two objectives,
and (b) selection of appropriate methods of solution. These trade-
offs are present because the optimal design and optimal control
problems are coupled, and this coupling cannot be fully quantified
prior to solution of the optimization problem. Coupling can be par-
tially computed prior to solution of the full problem, as shown in
[23], which can be useful in some cases. In that work, it was shown
that coupling can be expressed as a product of two components.
One of these components, static gradient terms which capture
information about the plant, can be computed a priori, while the
second component, the integral of optimal control co-states, can-
not. Knowing these static terms, it is possible to identify some
cases in which coupling vanishes, i.e., those cases where the static
terms vanish. However, this does not provide full information on
coupling, which cannot be computed prior to full solution of the
problem, since the optimal control co-states are not known prior
to solution of the problem.

If coupling is known to exist, then the problem should be solved
using a method that lends itself to coupled systems. The solutions
found in a simultaneous, or all-in-one, optimization are
system-optimal; however, this approach is computationally inten-
sive. In strongly coupled systems, an all-in-one formulation is
indeed preferable, and many advances have been made in this area,
improving the computational efficiency significantly. In other sys-
tems, however, this approach may not be necessary, if a modified
sequential approach can be taken. The modified sequential
approach also allows for the use of specialized control techniques,
such as root-locus or LQR, which are well established and under-
stood. Furthermore, the simultaneous formulation requires the
use of more than one discipline to formulate the full problem.
This presents organizational challenges, since expertise in the var-
ious disciplines typically resides in different individuals, and often
in different groups within an organization. Iterative approaches
may also be useful for coupled systems, such as the approach out-
lined in [23], or the nested optimization method used in [24].
However, these approaches similarly require the full problem to
be formulated before solution.

A sequential approach, while easier to solve, does not typically
find the system optimum. A modified sequential approach, such as
that proposed in [25–28], may provide system-optimal solutions;
however, this method requires the specification of an appropriate
Control Proxy Function (CPF). An appropriate CPF needs to capture
the fundamental control limitations, and has been shown to be
related to the coupling vector [25,27]. Thus, in addition to indicat-
ing which solution methods might be most appropriate for a given
problem, knowledge of coupling can be used to determine what
CPF may be used to implement this particular method.

There are other methods and variations on these methods as
well, such as those focused on systems where only partial redesign
is possible due to system constraints [29]. Other methods focus on
nonlinear systems [30,31]. Yet other methods are based on
decomposition-based approaches [32]. New methods are continu-
ally being developed, for application to problems with specific
characteristics.

In this paper it is shown that for some problem formulations, rep-
resenting important classical control problems, the existence and
strength of coupling can be determined a priori using the controlla-
bility Grammian, which offers a significant advantage both in formu-
lating the co-design problem and in choosing appropriate methods
of solution. The metrics used for coupling and controllability are
introduced in Section 2. Section 3 introduces the positioning gantry
system used throughout this paper to illustrate the relationships
between coupling and controllability. In Section 4, a general control
objective function is given, and then several specific special cases are
addressed. For these cases, the relationships between coupling and
controllability are derived and demonstrated on the positioning gan-
try system. Section 5 presents an additional case study, the applica-
tion of the work to a MEMS actuator; two optimizations are carried
out for this actuator, one in which coupling is identified and a simul-
taneous optimization is carried out, and a second one in which
knowledge of coupling is used to select a CPF. Finally, Section 6 pre-
sents concluding remarks.

2. Metrics used for coupling and controllability

Several metrics have been developed for quantification of cou-
pling. These metrics include a vector based on optimality condi-
tions [33,34], a matrix based on the Global Sensitivity Equations
(GSEs) [35], and the sensitivities that appear in the GSEs [36].
The metric used here is the vector description of coupling given
in Eq. (6), which is applicable to a co-design problem with
uni-directional coupling [33]. This metric, derived specifically for
problems of this form, is preferred due to its relatively simple form
[37].

Cv ¼
wc

wa

@f c da;dcð Þ
@da

þ @f c da;dcð Þ
@dc

ddc

dda

� �
ð6Þ

where Cv must be evaluated at the optimal solution to Eqs. (1)–(5).
Consequently, the coupling cannot be determined a priori, i.e., before
finding a solution to the simultaneous co-design problem in Eqs. (1)–
(5). When Cv ¼ 0, the optimization problem is uncoupled. While it is
possible for an optimization problem to decouple in cases where
Cv – 0, i.e., constraint decoupling [24], we will not address that situ-
ation in this work; in the cases we consider, decoupling will only
occur when Cv ¼ 0. In this case, the artifact design problem

min
da

f a dað Þ ð7Þ

subject to

ga dað Þ 6 0 ð8Þ
ha dað Þ ¼ 0 ð9Þ

can first be solved; then, given the optimal artifact design d�a, the
controller design problem

min
dc

f c dcð Þ ð10Þ

subject to

gc dcð Þ 6 0 ð11Þ
hc dcð Þ ¼ 0 ð12Þ



Fig. 1. Configuration of positioning gantry system.
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can be solved to obtain the same result as obtained from solving the
simultaneous co-design problem in Eqs. (1)–(5).

There are several measures of controllability. One metric which
is particularly useful in the analysis of co-design problems with
coupling is the controllability Grammian matrix, which can be cal-
culated for both constant and time-varying parameter linear
dynamical systems. For a system expressed in the form

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ ð13Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ ð14Þ

the controllability Grammian is the matrix

Wc tð Þ ¼
Z t

0
U sð ÞBBTUT sð Þds ð15Þ

where U sð Þ is the state transition matrix [38]. If the matrices A and
B are time-invariant, then Wc tð Þ is given by

Wc tð Þ ¼
Z t

0
eAsBBT eATs ds ð16Þ

In the case where the final time t !1, the steady-state controllabil-
ity Grammian, W1

c , can also be found by solving the Lyapunov
equation

AW1
c þW1

c AT ¼ �BBT : ð17Þ

The controllability Grammian is often used to determine simply
whether or not a system is controllable; if it is singular, the system
is not controllable. It can also be used to determine the minimum con-
trol effort required to move a system from the origin to a final state xf

at some final time tf , where the control effort, E tf

� �
, is given by

E tf

� �
¼
Z tf

0
uðtÞT uðtÞdt ð18Þ

and its minimum value, E� tf

� �
, is given by [38]:

E� tf

� �
¼ xT

f Wc tf

� ��1xf ð19Þ

It is important to note that Eq. (19) is independent of the control struc-
ture; it depends only on the dynamics of the uncontrolled system, i.e., A
and B, and the final time tf . The optimal (i.e., minimum control) con-
troller performance depends on the controllability Grammian, which
is independent of the control architecture and variables. Thus, we will
show that, for a large class of important control design problems, the
Grammian can be used to determine coupling a priori.

3. Configuration of positioning gantry example system

Consider the system shown in Fig. 1, representing a simple
model of a positioning gantry. In this system, a mass M is con-
nected to a fixed surface by a linear spring with stiffness ks. A belt
connects to the mass and wraps around a pulley with radius r,
which is mounted on a DC motor with armature resistance Ra

and motor constant kt . The mass is assumed to slide on a friction-
less surface. The displacement of the mass from its original posi-
tion is Z. The system can be modeled by the following equations:

_x ¼ Axþ Bu ð20Þ
Z ¼ Cx ð21Þ

x ¼
Z
_Z

� �
ð22Þ

A ¼
0 1
� k

m � b
m

" #
ð23Þ

B ¼
0
1
m

" #
ð24Þ

C ¼ 1 0½ � ð25Þ
where m ¼ MrRa
kt
; b ¼ kt

r , and k ¼ ksrRa
kt

. A state-feedback controller with
gains K ¼ K1 K2½ � and precompensator G is applied to the system, as
shown in Fig. 2, to generate the input voltage u to the motor. The
steady-state voltage is denoted as uss. Values of the parameters
are Ra ¼ 2 kX;M ¼ 2 kg; ks ¼ 2 N=mm, and uss ¼ 10 V. The design
variables r and kt are found in the optimization of the gantry system
using Matlab’s fmincon function. This example will be used to illus-
trate the relationship between coupling and controllability in
Section 4.

4. Relationships between and Wc

Consider a system whose dynamics are linear and
time-invariant, and which is modeled in the form

_x tð Þ ¼ A dað Þx tð Þ þ B dað Þu tð Þ ð26Þ
x 0ð Þ ¼ x0

x tf
� �
¼ xf

It is assumed that this system exhibits uni-directional coupling, as
in (1)–(5). The objective function for the optimization is a weighted
sum of the two individual objectives, where the weights wa and wc

are strictly positive.
The control objective function for this system is assumed to

take the general form of

f c ¼
Z tf

0
x tð ÞT Qx tð Þ þ u tð ÞT Ru tð Þ þ s
� 	

dt: ð27Þ

This objective function includes the accuracy of the system’s
response, weighted by the matrix Q ; control effort, weighted by
the matrix R; and the speed of response, weighted by the scalar s.
Such an objective can be formulated either for a fixed terminal time
problem or for a steady-state problem, by either assigning a finite
Fig. 2. Schematic of system controller.
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value to tf or by assuming that tf !1. It is important to note that
this formulation is not all-encompassing; there are other terms that
could be added, such as energy-based terms, and it could be
expanded to include the Mayer (terminal cost) term. However, this
formulation does cover a significant range of control objectives that
are of interest.

While the existence and strength of coupling has not been
derived for this general problem, it is possible to derive useful rela-
tionships for several special cases of this general formulation.
These special cases represent important classical control problems,
and can provide insight into the general problem. The specific
cases considered here are described in Table 1.

In the first case, the case of fixed terminal time [39], energy is of
primary interest, and the problem is formulated to minimize con-
trol effort. In the second case, the speed of response is of impor-
tance; a constraint is placed on control effort, but the problem
objective is to minimize the response time. In the third case, the
control problem is formulated as a classical infinite horizon
Linear Quadratic Regulator (LQR) problem, in which a combination
of control effort and the system states is minimized.

4.1. Case I: Control effort as objective

In Case I, the controller objective function is the control effort
required to move the system from the origin to a state xf dað Þ at
some specified time tf , where tf is a parameter, as given by Eq.
(18). Using (19) and (18), the controller objective function
f c da;dcð Þ will satisfy the relation

f c da;dcð ÞP xf dað ÞT Wc dað Þ�1xf dað Þ ð28Þ

where the equality applies if an optimal (i.e., minimum control
effort) controller is chosen. The coupling vector is computed from
(6) as follows:

Cv ¼
wc

wa

@

@da
xf dað ÞT Wc dað Þ�1xf dað Þ
� 	

ð29Þ

Cv ¼
wc

wa

xf dað ÞT @Wc dað Þ�1

@da1
xf dað Þ þ 2xf dað ÞT Wc dað Þ�1 @xf dað Þ

@da1

xf dað ÞT @Wc dað Þ�1

@da2
xf dað Þ þ 2xf dað ÞT Wc dað Þ�1 @xf dað Þ

@da2

..

.

xf dað ÞT @Wc dað Þ�1

@dan
xf dað Þ þ 2xf dað ÞT Wc dað Þ�1 @xf dað Þ

@dan

2
66666664

3
77777775

T

ð30Þ

Given a particular system, it is possible to express the coupling in terms
of the artifact design variables da, constants, and parameters in the
problem. If the ith term in the coupling vector vanishes, then the ith
artifact design variable will not participate in the coupling. If all terms
Table 1
Summary of special cases of general control objective function.

Description Q R s Initial/final
condition(s)

Case I Minimum control
effort with fixed
terminal time

0 I 0 x0 ¼ 0
Eq. (30)

Case II Minimum response
time with fixed
control effort

0 0 1 x0 ¼ 0
Eq. (46)

Case III Infinite time LQR Positive
semi-
definite

Positive
definite

0 xf ¼ 0
Eq. (59)

Bold denotes vectors and/or matrices.
in the coupling vector vanish, then the problem is uncoupled. A partic-
ular coupling term will vanish under one of two conditions:

1. The vectors xf dað Þ and 2Wc dað Þ�1 @xf dað Þ
@dai
þ @Wc dað Þ�1

@dai
xf dað Þ

� 	
are

orthogonal.

2. @xf dað Þ
@dai

¼ � 1
2 Wc dað Þ @Wc dað Þ�1

@dai
xf dað Þ.

This can occur when the variables da result in changes in the con-
trol effort that counteract the effects of the changes in xf . As an
example, an increased xf could be associated with a problem con-
figuration with a more efficient use of control effort.

The problem further simplifies if the final state, xf , is not dependent
on da. In that case, the expression given in (30) can be simplified to

Cv ¼
wc

wa

xT
f
@Wc dað Þ�1

@da1
xf

xT
f
@Wc dað Þ�1

@da2
xf

..

.

xT
f
@Wc dað Þ�1

@dan
xf

2
66666664

3
77777775

T

ð31Þ

In this situation, the requirement for decoupling that Cv ¼ 0 will be

met if @Wc dað Þ�1

@da
¼ 0 for all feasible values of da. Of course, it is also

possible for the coupling vector to vanish if the vector @Wc dað Þ�1

@da
xf

is orthogonal to xf; however, examining the dependence of the con-
trollability Grammian matrix on the artifact design variables will
often indicate whether coupling exists, and indicate its strength.

4.1.1. Positioning gantry example for Case I
For the positioning gantry described in Section 3, the following

objectives and constraints are selected:

f a kt ; rð Þ ¼ �Zf kt; rð Þ ð32Þ
2:5 6 r 6 7:5 ð33Þ
5 6 kt 6 20 ð34Þ

where the final displacement Zf kt; rð Þ represents the peak displace-
ment, with a 10% overshoot over the steady-state displacement,
Zss kt; rð Þ.

Zf ¼ 1:1Zss ¼
1:1usskt

rRaks
ð35Þ

The controller objective is

f c kt ; r;K1;K2;Gð Þ ¼ E ¼
Z tf

0
u kt ; r;K1;K2;G; tð Þð Þ2dt ð36Þ

In this problem, Q ¼ 0; s ¼ 0, and R ¼ ½1�. This optimization prob-
lem, then, clearly fits the description for a Case I problem. The con-
trollability Grammian Wc kt; r; tf

� �
of this system is given by

Wc kt ; r; tf

� �
¼

Wc11 kt ; r; tf

� �
Wc12 kt ; r; tf

� �
Wc21 kt ; r; tf

� �
Wc22 kt ; r; tf

� �
" #

ð37Þ

where the individual terms are as follows:

Wc11 kt ; r; tf

� �
¼ 1

2bk
� 2me�

b
mtf

b 4mk� b2
� 	þ e�

b
mtf

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

p

� sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q
tf

m

� �
þ e�

b
mtf

2k 4mk� b2
� 	

� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q
tf

m

� �
ð38Þ
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Wc12 kt ; r; tf
� �

¼ e�
b
mtf

4mk� b2 1� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q
tf

m

� �� �
ð39Þ

Wc21 kt ; r; tf
� �

¼ e�
b
mtf

4mk� b2 1� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q
tf

m

� �� �
ð40Þ

Wc22 kt ; r; tf
� �

¼ 1
2bm

� 4ke�
b
mtf

b 4mk� b2
� 	þ e�

b
mtf

m 4mk� b2
� 	3=2

� sin
tf

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q� �
� be�

b
mtf

m 4mk� b2
� 	

� cos
tf

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mk� b2

q� �
ð41Þ

Taking derivatives of both xf dað Þ and Wc da; tf

� �
, it can be shown

that there are no feasible values of r and kt for which Cv ¼ 0.
Therefore, it is concluded that the problem will be coupled, and
an appropriate solution method for a coupled problem should be
chosen. When the simultaneous co-design problem is explicitly
solved, it is seen to be coupled, with the expected tradeoff between
the objectives shown in Fig. 3.

4.2. Case II: Time as objective

In Case II problems, the controller objective function and con-
straint are as follows:

f c da;dcð Þ ¼ tf da;dcð Þ ð42Þ

gc da;dcð Þ ¼
Z tf

0
uðda;dc; tÞT uðda;dc; tÞdt � Emax 6 0 ð43Þ

Assuming that the constraint is active and that an optimal con-
troller (i.e., one which uses the minimum control effort) is chosen,

xf dað ÞT Wc dað Þ�1xf dað Þ ¼ Emax ð44Þ

Taking derivatives of (44) and solving for @tf dað Þ
@dai

,

@tf dað Þ
@dai

¼ �
2xf dað ÞT Wc dað Þ�1 @xf dað Þ

@dai
þ xf dað ÞT @Wc dað Þ�1

@dai
xf dað Þ

2xf dað ÞT Wc dað Þ�1 @xf dað Þ
@tf dað Þ þ xf dað ÞT @Wc dað Þ�1

@tf dað Þ xf dað Þ
ð45Þ

and the coupling can be expressed as
Fig. 3. Pareto frontier for positioning gantry example of Case I.
Cv ¼ �
wc

waDN

2xf dað ÞT Wc dað Þ�1 @xf dað Þ
@da1

þ xf dað ÞT @Wc dað Þ�1

@da1
xf dað Þ

2xf dað ÞT Wc dað Þ�1 @xf dað Þ
@da2

þ xf dað ÞT @Wc dað Þ�1

@da2
xf dað Þ

..

.

2xf dað ÞT Wc dað Þ�1 @xf dað Þ
@dan

þ xf dað ÞT @Wc dað Þ�1

@dan
xf dað Þ

2
66666664

3
77777775

T

ð46Þ

where

DN ¼ 2xf dað ÞT Wc dað Þ�1 @xf dað Þ
@tf dað Þ

þ xf dað ÞT
@Wc dað Þ�1

@tf dað Þ
xf dað Þ ð47Þ

Note that the coupling vector is parallel to that seen for Case
I, and the conditions for decoupling in this problem are math-
ematically identical. This indicates that the physical conditions
under which the problems decouple are also the same. As in
Case I, therefore, one situation which would result in decou-
pling is that in which changes in da produce both a greater dis-
placement xf of the system and a more efficient use of the
available control effort. Also as in Case I, if the final state xf

is a parameter rather than being a function of da, then the cou-
pling vector will simplify. In this case, the coupling can be
expressed as

Cv ¼ �
wc

wa xf dað ÞT @Wc dað Þ�1

@tf dað Þ xf dað Þ
� 	

xf dað ÞT @Wc dað Þ�1

@da1
xf dað Þ

xf dað ÞT @Wc dað Þ�1

@da2
xf dað Þ

..

.

xf dað ÞT @Wc dað Þ�1

@dan
xf dað Þ

2
66666664

3
77777775

T

ð48Þ

which is parallel to the simplified coupling vector given by Eq. (31),
with identical conditions for decoupling.
4.2.1. Positioning gantry example for Case II
Assume, in this case, that the artifact objective and constraints

are as given in Eqs. (32)–(34). The control objective and constraints
are as follows:

f c kt ; r;K1;K2;Gð Þ ¼ tf kt ; r;K1;K2;Gð Þ ð49Þ

g1 kt ;r;K1;K2;Gð Þ¼
Z tf

0
u t;kt ;r;K1;K2;Gð Þð Þ2dt�E� ¼E�E�60 ð50Þ

Monotonicity analysis indicates that the constraint g1 will be active
[40]; thus, this problem meets the conditions set down for Case II.
The controllability Grammian is given by Eqs. (37)–(41). In this case,
the coupling is again non-zero for every allowed value of r and kt .
When the problem is solved, the anticipated tradeoff between f a

and f c is evident, as shown in Fig. 4.

4.3. Case III: Infinite horizon Linear Quadratic Regulator (LQR)

The infinite-time LQR problem is designed to find the optimal
control signal u tð Þ to transition a system from an initial state
x0 ¼ x 0ð Þ to the zero state. The optimal control signal is defined
as the control signal which minimizes the quadratic cost function

f c ¼
Z 1

0
x tð ÞT Qx tð Þ þ u tð ÞT Ru tð Þ
� 	

dt ð51Þ

In the most general LQR problem formulation, there may also be a
cross-term present, i.e., the cost function would include a term
2x tð ÞT Su tð Þ; an example of this can be seen in [28]. However, it
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has been shown that a change in variables will reduce that more
general problem to the form shown in Eq. (51).

It is well-established [38] that the optimal solution to this LQR
problem is

u tð Þ ¼ �Kx tð Þ ð52Þ

where K is uniquely determined given A;B;Q , and R, and the terms
u;K, and x have dimensionality of ðm� 1Þ; ðm� nÞ, and ðn� 1Þ,
respectively. The LQR problem can be analyzed for the two cases
where m ¼ n and m – n, both of which lead to the same conclusion
regarding the relationship between coupling and controllability.

In the case where m ¼ n, the gain matrix K is invertible, and it is
possible to solve for x as x ¼ �K�1u, and the LQR objective, J, can
be rewritten as

J ¼
Z 1

0
uT R þ K�1

� 	T
Q K�1
� 	� �

u
� �

dt ð53Þ

¼
Z 1

0
uT Pu
� �

dt ð54Þ

This is in the same form as Eq. (18), with the addition of the matrix
P and the condition that tf !1. The minimum value of J, then, will
be a function of W1

c .
In the case where m – n, the Moore–Penrose pseudoinverse can

be used to write x in the form of x ¼ �Kyu, and

P ¼ R þ Ky
� �T

Q Ky
� �

. This allows an approximation for J to be writ-
ten as

J u
Z 1

0
uT Pu
� �

dt ð55Þ

and, as in the case of m ¼ n, this is in the same form as Eq. (18) and
the minimum value of J will be a function of W1

c . We can state,
therefore, that the LQR objective is a linear function of the
infinite-time controllability Grammian when LQR control is used,
and can be written as

f �c ¼ xT
0W1

c
�1x0 þ

Z 1

0
uT P� Ið Þu
� �

dt ð56Þ

where u is given by the following relation [38]:

u tð Þ ¼ lim
tf!1

�BT eAT tf�tð ÞWc tf
� ��1 eAtf x0

� �n o
ð57Þ

Since the steady-state control signal is zero, Eq. (56) simplifies to

f �c ¼ xT
0W1

c
�1x0 ð58Þ
Fig. 4. Pareto frontier for positioning gantry example of Case II.
This can then be differentiated to obtain the coupling relation,
which is given by

Cv ¼
@

@da
x0

T W1
c
�1x0

� 	
ð59Þ

This relation can be further simplified, in the case of loop trans-
fer recovery, as shown in [41]. In both that special case and in this
more general case, however, the relationship between coupling
and controllability is clearly seen.

4.3.1. Positioning gantry example for Case III
Consider, again, the positioning gantry system shown in

Section 2. In this case, the artifact objective function is assumed
to be the system’s total weight, which takes the specific form

f a r; ktð Þ ¼ c1 þ c2k1:5
t þ c3r2 ð60Þ

where c1 ¼ 10; c2 ¼ 5, and c3 ¼ 2:5, subject to the bounds given in
Eqs. (33) and (34). The controller optimization problem is formu-
lated as an LQR problem with controller objective

f c r; kt ;G;K1;K2ð Þ, given by Eq. (51) with x0 ¼
3:5
0

� �
;R ¼ 1, and

Q ¼ 0 0
0 1

� �
. The coupling in this case can be shown to vanish for

all values of r and kt , indicating that the problem is uncoupled
and the artifact and controller can be designed sequentially.
When the co-design problem is solved, no tradeoff is seen. For all
values of wa and wc; f a ¼ 81:53 and f c ¼ 5:78.

5. MEMS actuator case study

The MEMS actuator considered here, shown in Fig. 5, was orig-
inally designed by Tung and Kurabayashi [42] and by Peters et al.
[16]. The actuator utilizes four electrostatic comb-drive actuators
to produce an out-of-plane displacement. To produce this displace-
ment, each comb drive is excited with a voltage, V, resulting in hor-
izontal (in-plane) movement (DX) of the silicon shuttles. The
micro-hinges on the polydimethyl siloxane (PDMS) platform bend,
and the platform moves vertically, or out-of-plane (DZ). The
amount of movement resulting from the comb drives’ actuation
depends on both the applied voltage, V, and the physical dimen-
sions of the actuator. Changing the actuator’s dimensions results
in a different output displacement for the same applied voltage.

The displacement of the actuator, DZ, is given by

DZ ¼ h1 þ h2ð Þ 1� cos Dhð Þ þ t þ pð Þ sin Dh ð61Þ

where p; t;h1, and h2 are the hinge dimensions shown in Fig. 6, and
Dh is the angular displacement of the hinge.

The angular displacement Dh satisfies the differential equation

MMEMSD€hþ CMEMSD _hþ KMEMSDh ¼ A Dhð ÞV2 ð62Þ

where MMEMS;CMEMS;KMEMS, and A Dhð Þ are functions of the actuator
geometry, as given in Eqs. (63)–(66). Derivations, and the equations
for the masses and stiffnesses MSi;MPDMS;Mhinge;KSi, and KPDMS, are
given in [42].

MMEMS ¼ MSi h1 þ h2ð Þ2 þMPDMS t þ pð Þ2

þ 1
3

Mhinge h1 þ h2ð Þ2 þ t þ pð Þ2
� 	

ð63Þ

CMEMS¼2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSi h1þh2ð Þ2þMPDMS tþpð Þ2
� 	r

KSi h1þh2ð Þ2þ2KPDMS

� 	
ð64Þ

KMEMS ¼ KSi h1 þ h2ð Þ2 þ 2KPDMS ð65Þ



Fig. 5. MEMS actuator configuration.
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A Dhð Þ ¼ n�o h1 þ h2ð Þ
d

h1 þ h2ð Þ � t þ pð ÞDhð Þ ð66Þ
where f ¼ 0:1 is an experimentally determined parameter, n ¼ 50 is
the number of fingers in the comb drive, �o ¼ 8:854e�12 F/m is the
permittivity of vacuum, and d ¼ 3 lm is the width of a finger.

Alternatively, the system dynamics may be written in
state-space form as
D _h

D€h

" #
¼

0 1
� KMEMS

MMEMS
� CMEMS

MMEMS

" #
Dh

D _h

� �
þ

0
A Dhð Þ

MMEMS

" #
V2 ð67Þ

Note that the coefficient A in Eq. (62) is a function of Dh. Thus,
the resulting controller design problem is non-linear. However,
depending on the values of the various parameters, a linear
approximation may be used. Naturally, such an approximation
should be used cautiously in cases when the problem is highly
non-linear; however, the linear assumption has been shown to
be effective in previous analyses of this actuator [16,25].

Two optimizations will be performed for this actuator. In the
first optimization, the objective will be to maximize final displace-
ment and minimize control effort for a given controller, subject to a
set of constraints, and the relationship between coupling and con-
trollability will be used to select design variables and choose an
appropriate solution method. In the second optimization, the
objective will be to maximize the steady-state displacement of
the actuator and to minimize a LQR objective. A sequential opti-
mization using a CPF will be performed, and the relationship
between coupling and controllability will be used to select an
appropriate CPF.
Fig. 6. Micro-hinge structure.
5.1. Optimization for final displacement and control effort

Assume that the MEMS actuator is to be optimized to maximize
its final displacement, DZf , and to minimize the control effort
required to achieve that displacement at a specified time,
tf ¼ 0:25 ms. The final displacement will be achieved at a 5% over-
shoot over the steady-state displacement.

An integral controller with state feedback is applied to the sys-
tem, as shown in Fig. 7. It is assumed that the angle Dh and the
angular velocity D _h can be measured, and that the angle Dh is to
be controlled. The dynamics of the closed-loop system can then
be written as

MMEMSD€hþ CMEMS þ K2A Dhð Þð ÞD _hþ KMEMS þ K1A Dhð Þð ÞDh

� KiA Dhð Þ
Z t

0
Dhr � Dhð Þds ¼ 0 ð68Þ

The artifact and control objective functions are given by the
relations

f a ¼ �DZf ¼ �1:05DZss ð69Þ

f c ¼ E ¼
Z tf

0
u tð Þð Þ2dt ¼

Z tf

0
V tð Þð Þ4dt ð70Þ

with artifact inequality constraints, ga, based on manufacturability,
stress, and electrical and mechanical stability [25]. This optimiza-
tion problem satisfies the description for Case I, where R ¼ 1, and
thus the coupling can be evaluated using Eq. (30).

Five potential artifact design variables are considered, the hinge
dimensions p; t;h1, and h2, and the shuttle length, l1. It can be
determined that there are no values for which the coupling vector
will vanish, and thus a decoupled optimization problem cannot be
formulated with them. However, it is useful to know how strongly
coupled the problem would be with the potential design variables.
Therefore, the derivatives of the controllability Grammian are eval-
uated numerically for the potential design variables at the nominal
values given in Table 2. Note that the controllability Grammian
does not depend on the potential design variable l1, and therefore
it can be stated that l1 does not participate in the coupling.

@Wc

@p
¼

0 �0:0002
�0:0002 �100:6

� �
ð71Þ

@Wc

@t
¼

0 �0:0002
�0:0002 �112:7

� �
ð72Þ

@Wc

@h1
¼

0 �0:0038
�0:0038 �149:9

� �
ð73Þ

@Wc

@h2
¼

0 0:00001
0:00001 61:84

� �
ð74Þ

@Wc

@l1
¼

0 0
0 0

� �
ð75Þ
Ki/s 1/s 1/s

KMEMS/
MMEMS

CMEMS/
MMEMS

K1

K2

+
-

+ +
--

- -A( /
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r(t)

.
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Fig. 7. Control architecture and system dynamics.



Fig. 8. Optimal solutions for MEMS actuator.
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It can be seen that, in all these cases, the off-diagonal terms are
quite small, and there is a zero term in each of them. The only term
which is of any significant size is the lower diagonal term. This
indicates that only one of the terms in the Grammian is signifi-
cantly affected by the design variables, and it is the term that cor-
responds to the angular velocity of the actuator.

The variables chosen for this optimization are l1; p, and t, while
h1 and h2 are set as parameters. This choice is made, in the case of
h1, because of its relatively large effect on coupling, as seen from
Eq. (73). In the case of h2, while it has little effect on coupling, it
also has a small effect on the artifact objective. The variables p
and t have a comparatively large effect on the artifact objective.
Since they do participate in coupling, a simultaneous optimization
is chosen, and the optimization problem is given by

min
da ;dc

�waDZf þwcE ð76Þ

subject to ga1
¼ t� 5h1 6 0 ð77Þ

ga2
¼ 910� l1 �

lp

2
� 2tþDXss

2
6 0 ð78Þ

ga3
¼ n�o h1 þ h2ð ÞV2

ss

d
� kbp2EPDMSw 2h1 þ h2ð Þ3

12p2 6 0 ð79Þ

ga4
¼ DXss �

lSiffiffiffi
2
p � lf o

2

� �
6 0 ð80Þ

ga5
¼ EPDMSh1Dhss

2p
�rPDMSmax 6 0 ð81Þ

ga6
¼ 3DXssESibs

4l2Si

�rSimax 6 0 ð82Þ

1 lm 6 p 6 1000 lm ð83Þ
1 lm 6 t 6 1000 lm ð84Þ
100 lm 6 l1 6 1000 lm ð85Þ

where da ¼ l1;p; tð Þ and dc ¼ K1;K2;Kið Þ.
Solutions for various choices of wa and wc are shown in Fig. 8,

and it can be seen that coupling is present, as expected.
Having a priori knowledge of the existence of coupling was use-

ful in the formulation of this problem. Using this knowledge, it was
possible to make an informed choice of artifact design variables. In
this case, a completely decoupled problem could not be formulated
unless the variables were restricted to l1. However, knowing the
relative contribution to coupling of each potential variable choice
allows a designer to weigh the increased problem complexity
posed by coupling against the potential improvement in the arti-
fact objective function for that variable. In addition, given the
knowledge that the problem was coupled, a simultaneous opti-
mization was chosen. If the problem had been known to be uncou-
pled, then a sequential optimization would have been chosen
instead.

5.2. Optimization for steady-state displacement and LQR control

Assume that the MEMS actuator is to be optimized to maximize
its steady-state displacement, DZss, and to minimize an LQR objec-
tive, in which R ¼ 1 and Q ¼ I. The variables chosen for this
Table 2
Nominal values of potential design variables.

Variable (lm) Value

p 80
t 20
h1 20
h2 30
l1 700
optimization are the same as those used in Section 5.1, i.e., l1; p,
and t, and the constraints are those given in Eqs. (77)–(82). The
objective function is formulated as a linear weighted combination
of the artifact objective function and the Control Proxy Function
(CPF):

min
da
�w1DZss þw2v ð86Þ

where the steady-state displacement is given by

Zss ¼ h1 þ h2ð Þ 1� cos Dhð Þ � t þ pð Þ sin Dh ð87Þ

as derived in [42]. The LQR objective given by Eq. (51) is then min-
imized for the resultant artifact design. Obtaining an appropriate
artifact design which is predisposed to effective LQR control
depends on the CPF selected, and how well it captures the tradeoff
between the artifact and controller design.

The relationship between coupling and controllability is used to
select an appropriate CPF. This optimization problem satisfies the
criteria for Case III, and therefore it is known that the coupling is
given by Eq. (59). This suggests that a CPF based on the
steady-state controllability Grammian may be effective, so the
CPF is chosen to be

v ¼ 1
det W1

c

� � ð88Þ

Solutions for various weights are shown in Fig. 9, with the solu-
tion set to the simultaneous optimization problem shown. It can be
seen that this CPF is effective, and that the results of the modified
sequential optimization are system-optimal. Knowing the relation-
ship between coupling and controllability facilitated an appropri-
ate choice of CPF, and the problem could have been solved
without the need to formulate a simultaneous optimization.

6. Concluding remarks

In this paper, we have formulated an optimal co-design prob-
lem with a general controller objective that includes the accuracy
of response, speed of response, and control effort required. We
have shown that, for several important special cases of this formu-
lation, it is possible to derive a relationship between the coupling
vector and the controllability Grammian matrix for the system.
This relation is independent of the artifact objective function and
the controller architecture, and this allows the a priori calculation
of coupling using the controllability Grammian. This relationship,
while it requires knowledge of the control objective, does not
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require any knowledge of the control topology used to meet that
objective.

While such a relationship for the general controller objective
has not been derived, the cases presented here do give some
important insight into this general problem. As an example, it is
interesting to note that the first two cases, involving control effort
and speed of response respectively, yield identical conditions for
decoupling. This suggests that it is likely that these conditions will
be valid for a controller objective that includes both of these two
objectives; a proof of this conjecture is left for future work. It is fur-
ther noted that the form of the LQR objective function is similar to
the control objective in the first case, suggesting a strong funda-
mental connection among the various control objectives.

These results are significant for their use in understanding the
nature of the trade-off between design and control, including a bet-
ter picture of what the complete Pareto curve might look like. Use
of coupling information to characterize the Pareto curve can be
useful in cases where obtaining a large number of Pareto optimal
solutions is expensive, as discussed in [43,44]. These results are
also useful in problem formulation and choice of a solution
method.

When a co-design problem is being formulated and artifact
design variables are being chosen, the strength of the coupling in
a potential formulation can be considered. In the case of LQR prob-
lems, it may be possible to choose the matrices Q and R in order to
facilitate problem decoupling. In addition, for all cases presented in
this paper, the effect on coupling of potential artifact design vari-
ables can be considered. If a potential design variable participates
in coupling, then its effect on the artifact objective function can be
evaluated to determine whether it is significant enough to justify
the increased problem complexity. If a variable participates in cou-
pling but has a relatively small effect on the artifact objective func-
tion, it may be chosen as a parameter, resulting in an uncoupled
problem which can be solved sequentially with no loss of
optimality.

If it is determined that a problem cannot be decoupled, or if the
potential improvement in the artifact objective function justifies
the increased complexity of a coupled problem, then an appropri-
ate solution method can be chosen. It is known, in this case, that a
sequential solution method will not guarantee optimality, and a
method that accounts for coupling should be used. Such methods
include simultaneous problem formulations, methods involving
decomposition and coordination of sub-systems, and the use of a
Control Proxy Function (CPF) [25–27]. The a priori knowledge of
Fig. 9. Optimal solutions for MEMS actuator with LQR control.
coupling is particularly useful in the CPF method, since it provides
a basis for choosing an appropriate CPF. Several specific CPFs have
been derived, based on this understanding of coupling, as
described in [28]. Such methods may also be useful in problems
with bi-directional coupling, such as the combined active/passive
suspension presented in [28]. Further work will show when this
is the case, and may broaden the range of problems for which this
type of approach is appropriate.

Future work may include the extension of this work to cover
other controller objectives that can be formulated as specific cases
of the general form given here. This controller objective could also
be expanded to broaden its generality, by including the Mayer (ter-
minal cost) term and other possible objectives, such as
energy-based terms. Physical conditions and specific types of
mechanical elements that might exhibit decoupling also merit
investigation, as well as the application of this work to develop
additional CPFs. It is also important to note that this analysis is lim-
ited exclusively to linear systems, and in particular to linear time
invariant systems. While many systems fall into this category,
and others can be approximated in this fashion, it is a significant
limitation. Future work should also include extensions to
time-varying linear systems, and to nonlinear systems, in order
to expand the applicability of this work.
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