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Abstract Multiobjective optimization focuses on the ex-
plicit trade-offs between competing criteria. A particular
case is the study of combined optimal design and optimal
control, or co-design, of smart artifacts where the artifact
design and controller design objectives compete. In the
system-level co-design problem, the objective is often the
weighted sum of these two objectives. A frequently refer-
enced practice is to solve co-design problems in a sequen-
tial manner: design first, control next. The success of this
approach depends on the form of coupling between the two
subproblems. In this paper, the coupling vector derived for
a system problem with unidirectional coupling is shown

An earlier version of this manuscript was published as Frischknecht,
B., Peters, D., Papalambros, P., 2009, Pareto Set Analysis: Local Mea-
sures of Objective Coupling in Multi-objective Design Optimization,
The 8th World Congress on Structural and Multidisciplinary
Optimization, Lisbon, Portugal, June 1–5, Paper No. 1158.

This research was partially supported by the Ford Motor
Company–University of Michigan Innovation Alliance, the
Automotive Research Center, a US Army RDECOM Center of
Excellence headquartered at the University of Michigan, Graduate
Fellowships by the Rackham Graduate School at the University of
Michigan, and by NSF grant #0625060.

B. D. Frischknecht (B)
Centre for the Study of Choice, University of Technology Sydney,
645 Harris St, Level 4, Ultimo, NSW, 2007, Australia
e-mail: bart.frischknecht@uts.edu.au

D. L. Peters · P. Y. Papalambros
Mechanical Engineering, University of Michigan,
2250 G.G.Brown, 2350 Hayward Street,
Ann Arbor, MI 48105, USA

D. L. Peters
e-mail: dlpeters@umich.edu

P. Y. Papalambros
e-mail: pyp@umich.edu

to be related to the alignment of competing objectives, as
measured by the polar cone of objective gradients, in the
bi-objective programming formulation. Further, it is shown
that a measure describing the case where a range of objec-
tive weighting values for the system objective result in
identical design solutions can be normalized when the sys-
tem problem is considered as a bi-objective one. Changes
to the mathematical structure and input parameter values of
a bi-objective programming problem can lead to changes
in the shape of the attainable set and its Pareto boundary.
We illustrate the link between the coupling and alignment
measures and the outcomes of the Pareto set. Systemati-
cally studying changes to coupling and alignment measures
due to changes to the multiobjective formulation can yield
deeper insights into the system-level design problem. Two
examples illustrate these results.

Keywords Pareto set · Sensitivity analysis · Co-design ·
Objective coupling · Design optimization ·
Multiobjective optimization

Nomenclature

�v Coupling vector comparing artifact and system
objectives

� Constraint decoupling ratio
α Angle between two objective gradients
β Angle between system level objective gradient

directions for which x∗ is the solution to the system
design problem

γ Lagrange multipliers for inequality constraints
η1 Weighting factor in bi-objective minimization

problem
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η2 Weighting factor in bi-objective minimization
problem

θ< Polar cone angle between two objective gradients
λ Lagrange multipliers for equality constraints
μ Coefficient of friction for power screw
A Attainable set of objective vectors
X Feasible design domain
A State coefficient matrix determining the unforced

system response
B State coefficient matrix determining the forced

system response
C Vector determining example system output from

system states
E Control effort over a set interval of time
G Precompensator in controller
M Mass connected to a fixed surface by a linear spring
Mp Overshoot in the position response of the mass
K1 Controller state feedback gain associated with

position
K2 Controller state feedback gain associated with

velocity
Q<(x) The set of points that are superior to a particular x
Q≥(x) The set of points that are equal or inferior to a

particular x
Q∼(x) The set of points that cannot be compared to a

particular x
Ra Armature resistance for DC motor
W Weighting factor used in coupling vector

W = w2 | w1 = 1
Z The displacement of the mass from its original

position
c1 Constant based on material strength of spring
dm Power screw diameter
f1 Artifact objective
f2 Controller objective
f ◦
i Optimal objective value for criterion i optimized

singly
f N
i Worst value of objective i that is a member of

Pareto set
f◦ Vector of ideal values for all criteria
x f ◦

i Design variable vector that minimizes objective i
singly

g1 Artifact inequality constraints
g2 Controller inequality constraints
h1 Artifact equality constraints
h2 Controller equality constraints
k An n-dimensional vector with origin at x that lies

within the polar cone of the two objective gradients
k1, k2 Vectors representing the boundaries of the polar

cone between two objective functions
ks Linear spring constant
kt Motor constant for DC motor
l Pitch length for power screw

p Fixed value parameters
r Pulley radius
s Frequency domain variable in Laplace transform
ts Settling time
w1 Artifact objective weight
w2 Controller objective weight
x1 Artifact design variables
x2 Controller design variables
x∗ Vector of design variables that produces a nondom-

inated set of objective values
∇ fi Gradient of the objective function i
∇ f n

2 Gradient of the nested controller objective function

1 Introduction

The design of modern smart products requires concurrent
optimization of the artifact design and its controller. This so-
called co-design problem (Ou and Kikuchi 1996; Fathy et al.
2001; Reyer et al. 2001) is often performed in a sequen-
tial manner for reasons of convenience and tradition: design
the artifact first, and then design its controller (Li et al.
2001; Chen and Cheng 2006). In general, such a strategy
will yield non-optimal solutions, compared with a simul-
taneous or all-in-one optimization of the combined system
(Fathy et al. 2001; Reyer et al. 2001), particularly when bi-
directional coupling exists between the two subproblems,
for example, when each of the two objectives depends on
some variables and parameters of the other subproblem
(Reyer et al. 2001). However, there exists a large class of
problems where coupling is unidirectional. For example, the
artifact criterion f1(x1) depends only on the artifact design
variables x1 while the control criterion f2(x1, x2) depends
on both x1 and the controller design variables x2, so that the
system design objective becomes:

F = w1 f1(x1) + w2 f2(x1, x2), (1)

where w1, w2 are weights. Criteria interdependence, or cou-
pling, can be measured by the partial derivatives of the
artifact objective and constraint functions with respect to the
controller variables when the artifact criterion is indepen-
dent of the controller variables. A design example charac-
terized by such a formulation is a linear positioning device
where the artifact objective is steady-state displacement and
the controller objective is settling time.

Partitioning artifact and controller variables may be de-
sirable for practical purposes in cases where the effect of the
controller variables on the artifact criterion is deemed small
enough, or where the analytical or computational means are
not available to treat artifact and control variables simul-
taneously for the controller objective. One strategy for the
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latter case is to solve the system-level problem as a nested
optimization one (Reyer et al. 2001; Fathy 2003), where the
system solution is found with respect to x1, with the optimal
x2 computed as a function of x1 by solving the “inner” opti-
mal controller problem first (Fathy et al. 2001; Fathy 2003).
This nested problem formulation is distinguished from the
simultaneous one (1), using the notation

Fn = w1 f1(x1) + w2 f n
2

(
x∗

2(x1)
)
. (2)

Figure 1 is a schematic illustrating the computational dif-
ference between a simultaneous and a nested optimization
approach.

A limitation of the linear weighted criteria method is
that it cannot find Pareto points in a non-convex region
of the Pareto frontier (Das and Dennis 1997). Generalized
weighted criteria methods consider functions in the place
of constant weighting parameters (Athan and Papalambros
1996) and overcome the difficulty with non-convex Pareto
frontiers. We preserve the weighted sum formulation for the
system objective for simplicity and for interpretation in the
context of previous co-design and control work.

One can view the co-design problem as a bi-objective
Pareto formulation without scalarization and weights
(whether or not we solve the controller objective as a nested
problem),

F =
[

f1(x1)

f2(x1, x2)

]
. (3)

We can retrieve a range of efficient solutions and thereby
examine how much the two objectives compete or are
aligned (Cohon 1978) as measured by the differences in
the objective values or the design variables at different
Pareto solutions. Intuitively, it would appear that objective
alignment should relate to objective coupling.

Rather than taking the artifact and controller problem
formulation as fixed, considering how the Pareto set as a

Simultaneous
Optimization

Nested
Optimization

Fig. 1 Schematic showing the difference between a simultaneous opti-
mization and a nested one each with two subproblems f1 and f2

whole changes with changes in the problem formulation can
facilitate the choice of problem formulation, in other words
the choice of the attainable set, in addition to illustrating
the tradeoffs between specific solutions. The design of the
solution set rather than a single-point design is important in
many design scenarios. Design scenarios of particular rele-
vance share a characteristic that all design decisions are
not made simultaneously, but some may be made before
others (e.g., configuration design), some decisions may be
more flexible then others, or be repeated at a higher fre-
quency (e.g., dynamic controls, product platforming, design
for adjustability), and some decisions, or exogeneities,
may be uncertain (e.g., robust design, product development
investment planning, regulatory policy).

In what follows, we show how a measure of objective
alignment (the polar cone of objective gradients) is related
to the coupling vector derived for a problem with unidirec-
tional coupling. We also show how the measure of constraint
decoupling can be normalized when the system design prob-
lem is considered as a bi-objective problem. Constraint
decoupling occurs when, due to problem constraints, the
system optimal design solution is identical over a range of
weighting values for the individual criterion composing the
system objective. These measures help to understand how
the Pareto set is affected by changes to the system design
problem formulation.

For an example application, consider the problem of
designing a linear positioning device. Before the designer
resolves the tradeoff of steady-state displacement versus
settling time, she must first select whether the device is
composed of a motor, drive belt, and pulley or a motor and
power screw. We expect that this design topology choice
will result in different Pareto set solutions for displace-
ment and settling time. However, when making the choice
between topologies, the designer is not concerned only
with the displacement and settling time but also with the
size, cost, reliability, and adaptability of the design. We
illustrate how studying the coupling and alignment relation-
ship for each topology can inform a designer’s topology
decisions while reducing computational cost by not gen-
erating complete Pareto set representations. The proposed
method is a suite of post-optimality analysis tools that can
be employed to consider the tradeoffs between design objec-
tives not only for one problem formulation, i.e., Pareto
frontier, but across multiple problem formulations. Such
analysis is particularly useful for cases where generating
numerous Pareto optimal points to describe multiple Pareto
frontiers is computationally expensive.

We use the combined design and control problem for the
linear positioning system to illustrate the methodology for
comparing different Pareto set solutions of the same prob-
lem. However, the methods can apply to a general class
of problems that are characterized by asynchronous design
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decision making. The first set of decisions is represented
by a family of unique problem formulations, i.e., instances
of (3). The second set of decisions is represented by the
Pareto set of solutions for one of the unique problem for-
mulations. The design objective is then to select the best
problem formulation rather than the best design for a given
problem formulation (Zeleny 1998).

There are at least three asynchronous design decision-
making scenarios. First is the case where some decisions
are made before others. For example, the design topology
is selected before the final design can be specified in the
case of the linear positioning system. Another example is
the design of a product family where the product platform
may be defined before the component designs are finalized
(Nelson et al. 2001). Second is the case where initial deci-
sions are made and then a second set of decisions is made
repeatedly. An adjustable seat or a system with adaptive
controls are examples of this scenario. Third is the case
where there is uncertainty about the realization of a partic-
ular decision or external parameter (Levi et al. 2005). For
example, the decision about the range of values for a part
dimension can be made first by specifying a specific manu-
facturing process. The “decision” about the actual value of
the design variable is made later when the product is pro-
duced. In another example, a structure could be designed to
exhibit a particular natural frequency, but the decision about
the load on the structure is made later given some external
parameter such as wind velocity. Faced with each of these
cases, it may be desirable for the designer considering the
first set of design decisions to consider the range of solution
possibilities, i.e., the Pareto set, with respect to the second
set of decisions rather than a single “best” second decision
given each first decision possibility.

This paper follows work related to the problem of com-
paring problem formulations or Pareto sets including the
case where the change in the problem formulation is a
change in a parameter value (Rao and Papalambros 1989;
Rakowska et al. 1991), where the interest is to compare per-
formance of different regions of the design space (Shan and
Wang 2004), where the goal is to compare Pareto sets at
different levels of robustness (Levi et al. 2005; Gunawan
and Azarm 2005), and when the concern is about finding
the overall shape of the Pareto set (Das 1999) or iden-
tifying specific regions of the Pareto set (Kasprzak and
Lewis 2001).

Section 2 examines the relationship between objective
alignment and objective coupling. Section 3 uses a numeri-
cal example to demonstrate the proposed Pareto set analysis
and illustrate the terms introduced in Section 2. Section 4
presents a system co-design example that illustrates the
relationship between the measures of objective alignment,
coupling, and the Pareto set. Section 5 discusses how the
Pareto set analysis can be used in design decision making.

2 Measures for comparing Pareto sets

Multiobjective programming typically focuses on finding
Pareto points and defining the preference structure for
selecting one point among many (Steuer 1986). A Pareto
optimization problem is stated as:

min
x

f(x; p)| h(x; p) = 0, g(x; p) ≤ 0, x ∈ X (4)

Here f(x; p) is a vector of criteria of interest fi , i =
1, . . . , n. The set of variable values x that satisfy all con-
straints is the feasible (design) domain, X . The set of
parameters p take on fixed values. The set of all vectors
f mapped from the feasible domain is the attainable set
A = {f(x; p)|x ∈ X }. A point in A , f(x∗), is said to
be non-dominated or Pareto optimal, if there exist no f(x; p)

such that f(x; p) ≤ f(x∗; p) and fi (x; p) < fi (x∗; p) for
at least one i . Ideal values f ◦

i are the optimal criterion
values obtained optimizing one criterion at a time. The ideal
or utopia point is the vector of ideal values for all criteria
e.g., f◦ = [ f ◦

1 , f ◦
2 ]′. A nadir value f N

i is the worst value of
fi that is a member of the Pareto set.

One research area in multiobjective design optimiza-
tion has been methods to aid the design decision maker in
navigating the tradeoff between competing objectives. For
example, Tappeta and Renaud used local sensitivity and
second-order information around a particular Pareto point to
develop an approximation of the Pareto frontier that could
then be used as part of an iterative tradeoff exploration tool
(Tappeta and Renaud 2001). Zhang et al. applied a similar
approach to a robust design problem, and they empha-
sized the quadratic approximation of the Pareto surface as
a candidate representation of the designer’s utility func-
tion or preference structure (Zhang et al. 2000). Kitayama
et al. used the tradeoff matrix from Tappeta and Renaud
(2001) to propose an automated iterative Pareto frontier
exploration (Kitayama et al. 2009). Lootsma examined how
the Pareto frontier relates to sensitivity in the objective
functions (Lootsma 1999).

Several researchers have applied local Pareto front infor-
mation beyond tradeoff ratios by considering objective
function gradient differences in order to compare Pareto
solutions (Purshouse and Fleming 2003; Carlsson and Fuller
1995; Deng 2007). Additionally, analogies to postopti-
mal analysis in single objective problems have been pro-
posed, particularly for vector objective linear programming
(Kornbluth 1974; Gal and Leberling 1977). Others have also
discussed the idea of comparing different Pareto sets using
the concept of a meta-Pareto set, which includes all non-
dominated criteria vectors selected from the union of all
the individual Pareto sets under consideration (Athan and
Papalambros 1996; Mattson and Messac 2003).
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Past research incorporated local Pareto front informa-
tion to inform the tradeoff for a given problem formulation
or examine the Pareto boundary alone for multiple prob-
lem formulations. We incorporate local measures of the
Pareto front while applying these measures to compare
distinct problem formulations, namely multiple Pareto fron-
tiers, rather than a single problem formulation. We adopt or
define several measures related to multiobjective program-
ming problems and consider how these measures change
with changes in the problem formulation, and the attendant
implications for the Pareto set.

2.1 Quantification of objective coupling and alignment

The interdependence of multiple objectives for a given sys-
tem is critical to its design (Balling and Sobieszczanski-
Sobieski 1996; Bloebaum et al. 1992; Hajela et al. 1990).
Considering the system problem of combined artifact and
controller design, the co-design problem with unidirectional
coupling is formulated as (Fathy 2003)

min
x1,x2

w1 f1 (x1) + w2 f2 (x1, x2)

subject to: h1 (x1) = 0; h2 (x1, x2) = 0

g1 (x1) ≤ 0; g2 (x1, x2) ≤ 0 (5)

where f1 (x1) is the artifact objective function, f2 (x1, x2)

is the controller objective function, x1 and x2 are vectors
of artifact and controller design variables, h1 and h2 are
the artifact and controller equality constraints, g1 and g2

are the artifact and controller inequality constraints, and w1

and w2 are the weights associated with the objective func-
tions f1 and f2, respectively. In previous work on co-design
coupling, emphasis has been placed on comparing f1 to
the weighted system objective w1 f1 + w2 f2 through a cou-
pling vector �v rather than comparing f1 and f2 directly
(Fathy 2003).

The �v vector is derived as follows. Consider the
nested system design problem from (2) where the aster-
isk denotes that the optimal values for x2 have been found
with respect to x1. The coupling vector �v is derived from
the Karush–Kuhn–Tucker (KKT) optimality conditions for
the weighted-sum objective describing the system design
problem, where W = w2|w1 = 1, and

�v = W

(
∂ f2

∂x1
+ ∂ f2

∂x∗
2

∂x∗
2

∂x1

)
= W∇ f n

2 (x1). (6)

The inner term in (6) is the gradient of f n
2 (x∗

2(x1)) from (2).
�v is assumed to be a row vector.

Objective decoupling occurs when the inner term of �v ,
or ∇ f n

2 (x1), vanishes. Two objectives are then said to be

independent at the particular design point x when �v = 0.
In this case the solution to the system problem can be found
by solving the two single-objective problems, min f1 and
min f2 (Fathy 2003).

The magnitude of the coupling vector is meant to indicate
the degree of coupling. The coupling vector �v is difficult to
interpret because it is directly proportional to the subjective
weighting value W and the units of measurement for the
objective function f2. Comparing the two objectives directly
frees the designer from implying a scale W , or “exchange
rate”, between objectives before studying the attainable set.
One can also think of the interdependence or alignment of
the objectives as a function of gradient direction only (not
magnitude).

2.1.1 Gradient direction

To explore the idea of gradient direction we consider the
necessary conditions for a Pareto point in a bi-objective
minimization problem (Kuhn and Tucker 1951) as in (4):

η1∇ f1(x∗) + η2∇ f2(x∗) + λ�∇h(x∗) + γ �∇g(x∗) = 0

(7)

γ ≥ 0; λ �= 0; γ �g(x∗) = 0; h(x∗) = 0 (8)

Comparing (7) and (8) to what would be the first-order
optimality conditions for (5) we see that the co-design prob-
lem is a special case of the bi-objective problem where
the weighting factors η1, η2 were chosen a priori to be
w1, w2. Comparing gradient directions rather than coupling
magnitudes is one way to normalize the objective tradeoff
discussion. However, it should be noted that it is still pos-
sible that the gradient direction is affected by the scale of
the controller variables x2 since they do not appear in the
artifact objective function.

The decision space in a multiobjective problem can be
partitioned into three disjoint sets with respect to a feasible
point x (Zadeh 1963; Cohon 1978): Points [x1, . . . , xn]� ∈
Rn that are superior, in a set Q<(x); points that are equal or
inferior, in a set Q≥(x); and points that cannot be compared,
in a set Q∼(x). The set Q<(x) is equivalent to the interior
of the polar cone of the negative objective gradients

Q<(x) = {
k| − k�∇ f i > 0; i = 1, 2

}
(9)

where k is an n-dimensional vector with origin at x. The
angle between the boundaries of the polar cone can then
be taken as a measure of objective function alignment at a
particular x. A polar cone angle of π corresponds to the
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case where the gradients of both objectives at x are parallel
with the same signs, or aligned. A polar cone angle equal to
π implies coincident improving directions for both objec-
tives. The polar cone angle collapses to zero when objective
gradients are parallel with reversed signs.

The polar cone has an appealing geometric interpretation
in that the larger the polar cone angle the greater the region
of simultaneously improving directions, or the greater the
objective alignment. From the definition of polar cone in
(9), the polar cone angle is

θ< = arccos

(
k1 · k2

|k1||k2|
)

,

{k1| − k1∇ f1(x) = 0; k2| − k2∇ f2(x) = 0}. (10)

A convenient way to identify the appropriate k1 and k2 for
a problem with two design variables is to recognize that k1,
k2 should be orthogonal to −∇ f1, −∇ f2 and in the plane
defined by f1 and f2. We preserve the polar cone measure
for the n-dimensional case but calculate it directly from the
objective gradients:

θ< = π − α, (11)

where

α = arccos

( ∇ f1 · ∇ f2

|∇ f1||∇ f2|
)

. (12)

For an unconstrained bi-objective programming problem,
the polar cone angle is zero for all Pareto points. These
points belong to the set Q∼(x). The case is somewhat dif-
ferent for constrained bi-objective problems. The polar
cone angle will take values between zero and π and may
vary across the Pareto set. Together, the polar cone angles
between objectives at points along the Pareto set, and the
differences between ideal and nadir values for each objec-
tive give insight into the interdependence of the objectives
for the problem formulation under consideration.

2.1.2 Decision parity

Another notion of objective alignment that we call decision
parity refers to the similarity in the decision to be made x,
in order to minimize each objective f1 and f2 singly. A rela-
tive measure of decision parity is the L2 norm of the design
variables between objective ideal points ||(x f ◦

1 − x f ◦
2 )||2.

Complete parity requires that the identical set of variable
values minimizes both objectives. A degenerate case of
decision parity is when the objectives are independent.

2.1.3 Pareto frontier slope

The coupling vector �v is related to the slope of the Pareto
frontier of the bi-objective problem (Peters et al. 2009),
where at a given Pareto-efficient point x∗

d f ∗
2

d f ∗
1

= 1

W
�v

dx1

d f ∗
1

= ∇ f n
2

� · (1/∇ f1). (13)

2.2 Normalized constraint decoupling

Returning to the geometric interpretation of the weighted-
sum objective, (1), in the design variable space, the sum
of any two vectors with positive weighting factors (e.g.,
∇F = (1 − w)∇ f1 + w∇ f2| w ≥ 0) will be a new vec-
tor (e.g., ∇F) that lies between the two original vectors
assuming the same origin. The necessary conditions for the
optimal system design problem imply that the gradient of
the weighted-sum-objective vector can be formed by a con-
vex combination of the gradients of the active constraints.
Constraint decoupling exists when, at a given Pareto point
for a system design problem with weight wi , the span
of the convex combination of active and tight constraints
will similarly satisfy the necessary conditions for optimal-
ity for a system design problem with some other weighting
factor w j �= wi .

This situation is illustrated in Fig. 2 for a two-
dimensional linear programming problem with system
objective F = (1 − w) f1 + w f2 with two inequality con-
straints g1 and g2. The angle β measures the range of system
objective gradient directions for which x∗ is the solution
to the system design problem. The angle α measures the
angle between the two single objective gradients. The ratio
φ = β/α is defined as the constraint decoupling ratio.

The constraint decoupling ratio φ can be calculated at an
ideal point ( f ◦

1 ) by first calculating the angle α between the

x1

-

Δ
Δ

Δ

Δ
Δ

f2

- f1

- g1

- g2

- F

α
β

x2

Fig. 2 Constraint decoupling occurs in a scalarized multiobjective
problem when a range of weighting values results in the same problem
solution; shown here for linear functions
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two single-objective gradients ∇ f1, ∇ f2. We can then find
the limiting weighting value w∗, and compute the angle β

between the weighted-sum system-objective gradient with
weighting value w∗ and ∇ f1.

Assuming the system design objective is a convex combi-
nation of the single objectives, the limiting weighting value
can be found by solving the following problem where ∇ f1,
∇ f2, ∇g, ∇h have been evaluated at (x1, x2) f ◦

1
.

min
w,γ,λ

− w

subject to: (1 − w)∇ f1 + w∇ f2 + γ �∇g + λ�∇h = 0

− γ ≤ 0; λ �= 0 (14)

The ratio φ evaluated at the ideal point f ◦
1 is then

the ratio of the angle between the extreme weighted-sum
objective gradient with the same optimal solution as the
ideal point and the single-objective gradient ∇ f1, and the
angle between the two single-objective gradient vectors ∇ f1

and ∇ f2:

φ =
arccos

( ∇ f1·((1−w∗)∇ f1+w∗∇ f2)
|∇ f1||((1−w∗)∇ f1+w∗∇ f2)|

)

arccos
( ∇ f1·∇ f2|∇ f1||∇ f2|

) = β

α
(15)

The amount of constraint decoupling, or the range of
weighting values for which the constraint decoupling condi-
tions hold, will change with the objective scaling. However,
φ, based on the gradient directions will take a value between
zero and one and will not change with objective scaling. A
normalized measure can be defined for any Pareto point x∗
by replacing ∇ f1 in (14) with (1−υ)∇ f1 +υ∇ f2, where υ

is the minimum weighting value for which x∗ is the system
design problem solution.

Constraint decoupling implies that, for the given prob-
lem formulation, there is a region of the attainable set where
there exists a preference threshold. A designer’s preference
for improvement in one objective must exceed a threshold
value before she would incrementally move away from the
current solution. A higher value of φ represents a greater
threshold. Given a fixed set of constraints, increasing objec-
tive gradient alignment will result in a higher φ. Given
a fixed set of objectives, decreasing satisfied-constraint
gradient alignment will result in higher φ.

3 Pareto set analysis

In the general case, systems characterized by multiple
objectives will exhibit a tradeoff relationship between
improvements for both objectives. Considering how the
Pareto set as a whole changes with changes in the problem
formulation can facilitate the choice of problem formu-
lation, in other words the choice of the attainable set,

in addition to illustrating the tradeoffs between specific
solutions.

The design of the solution set rather than a single-point
design is important in many design scenarios. Design sce-
narios of particular relevance share a characteristic that all
design decisions are not made simultaneously, but some
may be made before others (e.g., configuration design),
some decisions may be more flexible then others, or be
repeated at a higher frequency (e.g., dynamic controls,
product platforming, design for adjustability), and some
decisions, or exogeneities, may be uncertain (e.g., robust
design, product development investment planning, regula-
tory policy).

Changes to the mathematical structure and input param-
eter values of a bi-objective programming problem can
lead to changes in the shape of the attainable set and its
Pareto boundary. We illustrate the link between the terms
described in Section 2 and outcomes of the Pareto set
using a two-dimensional nonlinear programming example
in Section 3.2, and a linear-positioning device design in
Section 4.

3.1 Problem specification and identification

The task of the designer, abstracted to a mathematical
decision-making problem, is to specify the functional forms
of the objective and constraint functions (referred to as
system specification in the dynamic systems terminology),
then partition model elements between parameters and vari-
ables, specify parameter values, and find efficient values for
design variables (referred to as system identification in the
dynamic systems terminology).

Each system specification and identification decision
may affect the Pareto set. We classify changes to a sys-
tem design problem formulation (summarized in Table 1)
according to this definition of system specification and
identification. For example, changing parameter values is
equivalent to a traditional parametric study and fits in sys-
tem identification. The examples listed in Table 1 reflect
changes to the example problem specified in (16) below.

3.2 Example

We now demonstrate examples of problem formulation
changes and observe the corresponding changes to the
Pareto set for a two-variable nonlinear programming prob-
lem modified from problem 10 in (Hock and Schittkowski
1981):

min
[

f1 = 0.5x2
1 − 7x1, f2 = x2

2 − x1x2 − px2
]�

subject to: x2
2 + 4x2

1 − 25 ≤ 0, p = 7 (16)
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Table 1 Classification of system design model changes

System modeling Change Example

stage

Specification Change objective –

functional form

Change constraint –

functional form

Add constraint x2 − 5 + 2x1 ≤ 0

Remove constraint –

Identification Repartition parameters –

and variables

Change parameter p = 5

values

The decision space of the problem is illustrated graphi-
cally in Fig. 3. Case (a) shows the unmodified problem, case
(b) shows the case where p = 5, and case (c) includes the
additional constraint x2 − 5 + 2x1 ≤ 0. The objective gradi-
ents are shown for each case. Panel (d) shows the objective
space where three Pareto points for each case are plotted.
The slope of the Pareto front at each point is also plotted.

The ideal value f ◦
1 is found at x = [2.5, 0] for all three

cases. We compute the coupling vector, polar cone angle,
slope of the Pareto front, and constraint decoupling ratio
for each case evaluated at f(x f ◦

1 ). The values are reported
in Table 2. The coupling vector and Pareto front slope are
undefined for cases (a) and (b) given that the gradient for f2

is orthogonal to the gradient for f1, i.e. θ< = π/2. At this
particular point an improvement in f2 is achieved at no cost
to f1. For case (c) the polar cone angle does not change
because the objective functions have not changed. How-
ever, due to the additional constraint, the feasible improving

Table 2 Pareto set analysis results

Criterion @ Case

a b c

Coupling vector (�v, W = 1) f ◦
1 und. und. 19

x1 = 2.1 8.66 2.47 14.2

f ◦
2 0 0 0

Polar cone angle (θ<) f ◦
1 π/2 π/2 π/2

x1 = 2.1 2.21 2.59 1.68

f ◦
2 2.68 2.79 2.68

Sensitivity (d f ∗
2 /d f ∗

1 ) f ◦
1 und. und. −4.22

x1 = 2.1 −1.77 −0.50 −2.90

f ◦
2 0 0 0

Constraint decoupling (φ) f ◦
1 0 0 0.29

x1 = 2.1 0 0 0

f ◦
2 0 0 0

direction for f2 changes, leading to a change in the coupling
vector and Pareto front slope. Also due to the additional
constraint, case (c) exhibits constraint decoupling at f ◦

1
with constraint decoupling ratio of 0.29. The dashed line in
Fig. 3c shows the limiting gradient direction at f ◦

1 for which
the system design problem will have the same solution as
the single-objective problem f1.

We can perform the same analysis for f(x f ◦
2 ). The solu-

tion is different for each case: (a) x = [1.78, 3.52];
(b) x = [2.01, 2.96]; (c) x = [0.92, 3.17]. The coupling
vector and Pareto front slope are zero for all three cases
because an infinitesimal feasible improving step for f1 will
yield no change for f2. However, the polar cone angles are
different between cases (a) and (b) reflecting that the change
in parameter value p from 7 to 5 altered the orientation of

(d)(c)(b)(a)
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Fig. 3 Graphical representation of problem given in (16) and modifications from Table 1. Panel a shows the unmodified problem. Panel b shows
the case where p = 5. Panel c shows the case where the constraint x2 − 5 + 2x1 ≤ 0 has been added. Panel d plots points in the objective space
for all three cases
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f2 so that the f1 and f2 objectives are more aligned in case
(b) than in case (a).

A third point along the Pareto front is evaluated (x1 =
2.1) for each case. This point gives some sense for the
overall shape of the Pareto front for each case. Evaluating
the objectives at a fixed value of x1 is analogous in the co-
design case to evaluating the system performance given a
predefined artifact design with the best possible controller
design for each case. The coupling vector, Pareto front
slope, and polar cone angle are different across all three
cases reflecting different levels of tradeoff between f1 and
f2 and different levels of objective alignment. In this par-
ticular example, the cases are ordered consistently across
all three metrics where an increase in magnitude of the cou-
pling vector corresponds to an increasingly negative Pareto
front slope and a decreasing polar cone angle.

Each Pareto point found in the example above increases
the information available about the objective tradeoff. Com-
puting the coupling vector, Pareto front slope, and polar
cone angle at each point adds little computational burden
while enhancing the overall description of the Pareto set.
Examining Fig. 3d, case (a) is likely to dominate the other
cases and so it may be judged superior if the range of perfor-
mance criteria is the most important factor in the problem
formulation selection. For reducing sensitivity of f2 with
respect to f1, case (b) would be superior when x1 ≈ 2.1.

4 System design example

We demonstrate the above Pareto set analysis for a sim-
plified design and controls problem involving a positioning
gantry. We consider two system topologies. In the first
topology, shown in Fig. 4a, a mass M is connected to a
fixed surface by a linear spring with constant ks . A flexible
belt connects the mass and a pulley with radius r , which

G (sI − A)-1B C

K

Zr Z

-

+ u x
Σ

Fig. 5 Control architecture for linear positioning system

is mounted on a DC motor with armature resistance Ra

and motor constant kt . The displacement of the mass from
its original position is Z . In the second topology, shown
in Fig. 4b, the belt and pulley are replaced by a power
screw with diameter dm , coefficient of friction μ, and pitch
length l. A state-feedback controller with a precompensator
is applied to the system, as shown in Fig. 5.

4.1 Formulation

The optimization problem for both topologies is formu-
lated as

min
M,ks ,K1,K2

F = w1 f1 + w2 f2 (17)

f1 = −Z f (M, ks) (18)

f2 = ts (M, ks, K1, K2) (19)

subject to

g1 (M, ks) = M − c1k2/3
s ≤ 0 (20)

g2 (M, ks, K1, K2) = Mp − Mp,max ≤ 0 (21)

g3 (M, ks, K1, K2) = E − Emax ≤ 0 (22)

where c1 is a constant based on the material strength of the
spring, Mp is the overshoot in the position response, and

Fig. 4 Linear positioning
system
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Table 3 Parameters for gantry optimization

Parameter r kt Ra c1

Value 2.5 cm 10.0 N-m/A 2.0 k� 1.0

Parameter V f μ dm l

Value 10 V 0.06 50 mm 10 mm

E is the control effort over a set interval of time, calculated
as E = ∫ t f

0 (V (t))2 dt .
Parameters used in the optimization are given in Table 3.

Three points on the Pareto fronts for the two topologies are
shown in Fig. 6, and a comparison of the Pareto measures
is given in Table 4. Note that it is possible to evaluate the
tradeoff present, despite the existence of only three Pareto
points, which would normally present difficulties in visual-
izing and utilizing the Pareto frontier. For some measures,
there is no difference between the two topologies. For exam-
ple, neither exhibits constraint decoupling, and in both cases
the polar cone angle θ< = π/2 at all points along the Pareto
set. There are some differences, however, which can be used
to judge which topology might be desirable. It can be seen
that the Pareto frontier corresponding to the first topology,
with the belt drive, is dominant. Considering the slope of
the Pareto front at point A indicates that the belt drive topol-
ogy is less sensitive. This might also indicate that the belt
drive is a better choice, if low sensitivity is considered desir-
able in the problem. The coupling vector �v , however, has a
smaller magnitude for the power screw topology for a num-
ber of points on the curve, including the point A. This might
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Fig. 6 Comparison of Pareto frontiers for linear positioning device

Table 4 Pareto set analysis results for positioning gantry

Criterion Case

Belt drive Power screw

Coupling vector f ◦
1

[
0 0

] [
0 0

]

(�v, W = 1) A
[−9.58 −11.81

] [−1.56 −1.89
]

f ◦
2 und. und.

Polar cone f ◦
1 π/2 π/2

angle (θ<) A π/2 π/2
f ◦
2 π/2 π/2

Sensitivity f ◦
1 und. und.

(d f ∗
2 /d f ∗

1 ) A −1.5 −9.5
f ◦
2 0 0

Constraint f ◦
1 0 0

decoupling (φ) A 0 0
f ◦
2 0 0

argue in favor of the power screw topology, if reducing the
amount of coupling is of importance. The choice between
these options will therefore depend on a full understanding
of the design problem and what is considered to be impor-
tant by the designer. Different circumstances will dictate the
relevant Pareto set characteristics.

4.2 Computation

Figure 7 summarizes steps for computing the measures
described above for analyzing the Pareto set for objective
alignment and coupling (steps in the first large box), and
for constraint decoupling (steps in the second large box).
The coupling vector, the Pareto front slope, and the polar
cone angle require the objective gradients ∇ f1, ∇ f2 and the
nested objective gradient ∇ f n

2 . The nested objective gradi-

ent is as follows ∇ f n
2 = ∂ f2

∂x1
+ ∂ f2

∂x∗
2

∂x∗
2

∂x1
, where the gradient

∇ f n
2 is computed in terms of x1 assuming the optimal values

x∗
2 given a particular x1.

It becomes necessary to compute gradients numerically
in the case of an objective function described by a black box
simulation or a function with difficult to compute gradients.
The added computational cost to compute the gradients,
and thereby compute the Pareto set analysis measures, is
on the order of one optimization iteration compared to a
minimum of several optimization iterations required to find
an additional Pareto point. Pareto set analysis allows the
designer to allocate computational budget to identify Pareto
points from multiple problem formulations—e.g., various
design topologies—rather than expending all resources to
identify enough Pareto points in one problem formulation
to describe the local behavior.

The numerical gradients may be sensitive to finite dif-
ference step size depending on the application. It is likely
that this issue will be addressed by the designer when
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Fig. 7 Algorithm for evaluating
objective alignment and
coupling measures for multiple
problem formulations
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conducting optimization to find a Pareto point. The finite
difference step size found to be suitable for optimiza-
tion can be used to compute gradients for Pareto analysis.
Methods for selecting appropriate finite difference step
sizes are addressed by Barton (1992).

Objective coupling can be calculated analytically or
numerically for a unidirectional coupled problem (2), fol-
lowing the definition in (6). Similarly, the polar cone angle
can be calculated by evaluating the gradients for both objec-
tive functions. This is a straightforward process if the whole
gradients are available: ∇ f1(x1), ∇ f2(x1, x2). However, it
can be challenging to formulate or compute the whole gradi-
ents when the controller objective is formulated as a nested

problem with gradient ∇ f n
2 = ∂ f2

∂x1
+ ∂ f2

∂x∗
2

∂x∗
2

∂x1
. For exam-

ple, assume f n
2 (x1) is a black-box simulation. We can

then compute ∇ f n
2 (x1) and observe ∂x∗

2/∂x1. However, we
require ∇ f2(x1, x2). If we assume we can compute ∇ f2(x2)

analytically or by evaluating the conventional controls prob-
lem f2(x2), then we can back out the missing component:
∂ f2/∂x1 = ∇ f n

2 − ∂ f2
∂x2

∂x2
∂x1

.
Computing the constraint decoupling ratio requires the

objective gradients as well as solving the optimization prob-
lem described in (14) given a candidate design point. Suit-
able candidate design points are the ideal points f ◦

1 and f ◦
2

as well as points where constraint activity shifts. These inte-
rior constraint decoupling candidate points may not be easy
to identify without solving for several Pareto points in order
to find the constraint activity shifts. Therefore the compu-
tational costs to identify interior constraint decoupling may
be high relative to the other measures.

Computing few Pareto points for each problem formu-
lation and then computing the analysis measures is most
advantageous for cases where objective functions are com-
putationally expensive and there are numerous problem
formulations to compare. For example, a designer may wish
to compare various structural design topologies to compare
vehicle mass versus crashworthiness. A single Pareto point
could be found for each topology and the Pareto analysis
measures could then be used to compare the tradeoff for

each topology. As resources are available, the designer can
compute a second or third Pareto point and augment the
analysis.

5 Discussion

A given design problem will exhibit varying tradeoffs
between competing objectives depending on the problem
formulation as illustrated in the numerical and system
design example. In Section 1 we proposed that a designer’s
criteria for selecting a given problem formulation frequently
go beyond consideration of the explicit performance criteria
represented in the bi-objective optimization problem. Some
of these other considerations may be related to the structure
of the tradeoff itself. For example, a designer may be willing
to sacrifice performance capability for reduced sensitivity
of the objectives to each other. The Pareto analysis mea-
sures can then be useful not only for describing the Pareto
set when Pareto points are sparse, but also informing the
designer on these other criteria.

Specifically, the designer may have a closed set of prob-
lem formulations, such as the belt and pulley or power
screw configurations in Section 4, and then pick the prob-
lem formulation best suited to address the challenges of
the design problem. Alternatively, the designer may use the
information from the Pareto analysis to consider how the
problem formulations might be changed in order to improve
the tradeoff characteristics. There are three general means
whereby the competition between objectives in a multiob-
jective problem can be reduced. First, a problem will exhibit
reduced coupling between objectives when the partial gra-
dients of the objective functions with respect to the shared
design variables are reduced in magnitude. A special case
is where the objectives can be solved as independent prob-
lems because there are no shared variables or the partial
gradients with respect to the shared variables are zero at an
optimal solution. Second, there is less difference between
the optimal solution to both objectives when solved singly.
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A special case is where a given design point is the minimizer
for both objectives solved singly. Third, the problem can be
constrained in such as way as to limit the feasible design
space to regions where improvement in a direction for one
objective occurs in the same direction as improvement for
the other objective.

The polar cone angle can be evaluated at any point in
the attainable set and gives a measure of objective align-
ment at that particular point. High polar cone angles within
the attainable set suggest that there are regions of mutu-
ally improving directions. In contrast, high polar cone
angles along the Pareto front could be an indication of an
undesirable problem formulation in some design scenarios.
Consider that in an unconstrained bi-objective problem, by
definition the polar cone angle will be zero at all points
along the Pareto set. High polar cone angles along the
Pareto front may imply that the feasible design space is far
away from both unconstrained objective optima. It should
be noted that objective alignment on the Pareto front as mea-
sured by the polar cone of the objective gradients is different
from a global notion of objective alignment that is perhaps
best characterized by decision parity, or the differences in
design variables between the two ideal points f ◦

1 , f ◦
2 .

Objectives that are highly aligned in terms of high polar
cone angles on the Pareto front are then likely to be highly
constrained. Reexamining the constraint formulation for the
possibility to relax, reformulate, or eliminate constraints
may be key to move toward improved objective values.
Objective functions compete directly when polar cone
angles along the Pareto front are low. Modifying objective
functions through changes in design topology, parameter
values, or other means may allow improvements in the
objective function values.

The notion of Pareto front sensitivity is particularly use-
ful for problems characterized by a primary objective and
a secondary objective. For example, in a vehicle design
problem with a safety objective such as maximize crash-
worthiness, a producer will primarily be concerned with
improving the crashworthiness objective although other
objectives such as vehicle mass may also be important. In
this case it would be valuable to assess the local sensitiv-
ity, or incremental cost to the crashworthiness objective for
decreases in vehicle mass. A designer may use the coupling
vector, Pareto front slope, and polar cone angles in order
to redesign the problem formulation to the benefit of both
objectives or to the decreased sensitivity of one objective
to the other. Depending on the Pareto analysis results these
changes may be achieved best by a decrease in the coupling
term due to constraint reformulation, objective reformula-
tion, parameter/variable repartitioning, or modification of
parameter values.

The Pareto set analysis described here can be conducted
at any Pareto point regardless of how it was found. There-

fore we do not mean to imply that the linear weighted
system design problem—posed for historical reasons from
the co-design literature and for simplicity of exposition—be
used to identify Pareto points. We describe the relationship
between a scalar weighted sum objective and a bi-objective
problem specifically to aid designers in considering a true
multi-objective formulation rather than a single weighted
sum objective with its corresponding difficulties.

With respect to the Pareto set analysis measures, the
polar cone angle and the objective sensitivity, i.e. slope, are
independent of weighting formulation. The coupling vec-
tor, which is the main criterion that we consider that relies
on the weighted sum formulation, can be extended to other
combinations of objectives including those that can iden-
tify points on a non-convex Pareto frontier (Peters 2010).
The constraint decoupling ratio was derived from the KKT
conditions for multiple objectives as originally described by
Kuhn and Tucker (1951). Their formulation assumes a con-
vex combination of objective functions. We leave for future
work an extension to the constraint decoupling ratio simi-
lar to the extension for the coupling vector to non-convex
Pareto points.

The focus of the paper is on bi-objective optimization
due to its relevance to the co-design case and its prevalence
across a broad range of optimization applications. Some
extensions to more than two objectives are straightforward,
and some extensions are left to future work.

The polar cone angle is a function of two objective gra-
dients, which are defined in the design variable space. The
region of mutually improving directions for all objectives
1, ..., n in the design space will be the empty set (and
therefore the effective polar cone angle will be 0) unless
one objective gradient can be described as a non-negative
and non-zero convex combination of the other objective
gradients: ∇F1 = α[∇F2∇F3∇Fn]�|α > 0.

Polar cone angles can be computed for each pair of objec-
tive gradients and the smallest polar cone angle is taken as
the effective polar cone angle for cases where a convex com-
bination can be formed. The objective sensitivity or slope of
the Pareto frontier can generalize to a gradient by select-
ing a baseline objective and computing the sensitivity of
each other objective with respect to the baseline objective.
The generalization of the coupling vector and the constraint
decoupling ratio are left for future work.

6 Conclusions

We have shown how the particular case of co-design can be
represented as a system design problem or alternatively as
a bi-objective programming problem with an artifact objec-
tive and a controller objective. The coupling vector derived
earlier for a system problem with unidirectional coupling
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was shown to be related to the alignment of competing
objectives, as measured by the polar cone of objective gra-
dients, in the bi-objective programming formulation. We
also showed how the measure of constraint decoupling can
be normalized when the system problem is considered as a
bi-objective one.

Systematically studying changes to coupling and align-
ment measures due to changes to the multiobjective for-
mulation can yield deeper insights into the system-level
design problem. We illustrated this approach with a simple
nonlinear programming example and a positioning gantry
co-design problem. The approach involves selecting one or
several Pareto efficient points for analysis. These points can
be evaluated for each change in problem formulation such
as a change in the functional form of the objective function
or a repartitioning of variables and parameters. Numerical
measures were presented that describe each Pareto point
in terms of the coupling between objectives, the sensitiv-
ity of one objective with respect to the other, the objective
alignment and the extent of constraint decoupling. These
measures can aid the designer seeking to reformulate the
design problem to increase objective alignment or improve
objective performance.

The desirability of a given Pareto set, or problem formu-
lation, over another should be dictated by the design context.
There are numerous design contexts where the designer is
concerned with the attainable solution set and not only a
point design solution. Such problems include the nested
co-design problem described here and a wide variety of
problems where the “control,” or partitioned variable design
decisions, may be made asynchronously to the other design
decisions.

As computational expense increases, it is not always fea-
sible to generate a suitable graphical representation of the
Pareto set. The methods presented in this paper provide a
series of concrete steps to make the most out of a small
number of analysis runs by connecting the local behavior
of a bi-objective problem to the characteristics of the Pareto
set. Future work may seek to extend the numerical mea-
sures described here to higher-dimension problems where
graphical representation is similarly problematic.
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