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1. Abstract
Multi-objective optimization focuses on the explicit trade-offs between competing criteria. A particu-
lar case is the study of combined optimal design and optimal control, or co-design, of smart artifacts
where the artifact design and controller design objectives often compete. In the system-level co-design
problem, the objective is usually the weighted sum of these two objectives. The preferred practice is to
solve co-design problems in a sequential manner: design first, control next. The success of this approach
depends on the form of coupling between the two subproblems. In this paper, the coupling vector derived
for a system problem with unidirectional coupling is shown to be related to the alignment of competing
objectives, as measured by the polar cone of objective gradients, in the bi-objective programming for-
mulation. Further, it is shown how the measure of constraint decoupling can be normalized when the
system problem is considered as a bi-objective one. Systematically studying changes to coupling and
alignment measures due to changes to the multi-objective formulation can yield deeper insights into the
system-level design problem. Two examples illustrate these results.

2. Keywords: Pareto set, sensitivity analysis, co-design, objective coupling, design optimization

3. Introduction
The design of modern smart products requires concurrent optimization of the artifact design and its
controller. This so-called co-design problem [1, 2] is often performed in a sequential manner for reasons
of convenience and tradition: design the artifact first, and then design its controller. In general, such
a strategy will yield non-optimal solutions, compared with a simultaneous or all-in-one optimization of
the combined system [1, 2], particularly when bidirectional coupling exists between the two subproblems,
for example, when each of the two objectives depends on some variables and parameters of the other
subproblem [2]. However, there exists a large class of problems where coupling is unidirectional, for
example, the artifact criterion f1(x1) depends only on the artifact design variables x1 while the control
criterion f2(x1,x2) depends on both the artifact variables and the controller design variables x2, so that
the system objective becomes: F = w1f1(x1) + w2f2(x1,x2), where w1, w2 are weights. An example of
such a formulation is a linear positioning device where the artifact objective is steady-state displacement
and the controller objective is settling time. Such a partitioning is inherent when the artifact criterion is
independent of the controller variables as measured by the partial gradients of the objective and constraint
functions with respect to the controller variables. Partitioning artifact and controller variables may be
desirable for practical purposes in cases where the effect of the controller variables on the artifact criterion
is deemed small enough, or where the analytical or computational means are not available to treat artifact
and control variables simultaneously for the controller objective. One strategy for the latter case above is
to solve the system-level problem as a nested optimization one [2, 3], where the system solution is found
with respect to x1, with the optimal x2 computed as a function of x1 by solving the “inner” optimal
controller problem first [1, 3]. This nested problem formulation is distinguished from the simultaneous
one using the notation Fn = w1f1(x1) + w2f

n
c (x∗2(x1)).

Viewing the co-design problem as a bi-objective Pareto formulation without scalarization and weights,
we can examine how much the two objectives compete or are aligned [4]. Intuitively, it would appear
that objective alignment must relate to objective coupling. Quantifying this relationship will provide
deeper insights in the nature of both the alignment and coupling concepts, and their implications for
understanding coupled multi-objective problems. In what follows, we show how a measure of objective
alignment (the polar cone of objective gradients) is related to the coupling vector derived for a problem
with unidirectional coupling, and how the measure of constraint decoupling can be normalized when the
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system design problem is considered as a bi-objective problem. These measures help to understand how
the Pareto set is affected by changes to the system design problem formulation.

Section 4 examines the relationship between objective alignment and objective coupling. Section 5
uses a simple numerical example to illustrate the terms introduced in Section 4. Section 6 presents a
system design example that illustrates the relationship between the measures of objective alignment,
coupling, and the Pareto set.

4. Objective Coupling and Objective Alignment
Multi-objective programming typically focuses on finding Pareto points and defining the preference struc-
ture for selecting one point among many [5]. A Pareto optimization problem is stated as:

min
x

f(x; p)| h(x; p) = 0, g(x; p) ≤ 0, x ∈ X (1)

Here f(x; p) is a vector of criteria of interest fi, i = 1, . . . , n. The set of variable values x that satisfy
all constraints is the feasible (design) domain, X . The set of parameters p take on fixed values. The
set of all vectors f mapped from the feasible domain is the attainable set A = {f(x; p)|x ∈ X}. A
point in A, f(x∗), is said to be non-dominated or Pareto optimal, if there exist no f(x; p) such that
f(x; p) ≤ f(x∗; p) and fi(x; p) < fi(x∗; p) for at least one i. Ideal values f◦i are the optimal criterion
values obtained optimizing one criterion at a time. The ideal or utopia point is the vector of ideal values
for all criteria, f◦ = [f◦1 , f

◦
2 ]′.

Several researchers have applied the concept of objective function gradient differences in order to
compare solutions [6, 7, 8]. Lootsma examined how the Pareto frontier relates to sensitivity in the
objective functions [9]. Additionally, analogies to postoptimal analysis in single objective problems have
been proposed, particularly for vector objective linear programming [10, 11]. Others have also discussed
the idea of comparing different Pareto sets using the concept of a meta-Pareto set, which includes all non-
dominated criteria vectors selected from the union of all the individual Pareto sets under consideration
[12, 13]. We adopt the polar cone of the negative gradients as our measure of objective alignment, and we
will consider how this measure changes, and the attendant implications for the Pareto set, with changes
in the problem formulation.

The decision space can be partitioned into three disjoint sets with respect to a feasible point x: Points
[x1, . . . ,xn]> ∈ Rn that are superior, Q<(x); points that are equal or inferior, Q≥(x); and points that
cannot be compared, Q∼(x). The set Q<(x) is equivalent to the interior of the polar cone of the negative
objective gradients

Q<(x) = {k| − k>∇f i > 0; i = 1, 2} (2)

where k is an n-dimensional vector with origin at x [14, 4]. The angle between the boundaries of the
polar cone can then be taken as a measure of objective function alignment at a particular x. A polar
cone angle of π corresponds to the case where the gradients of both objectives at x are parallel. The
polar cone angle collapses to 0 when objective gradients are parallel with reversed signs.

The interdependence of the multiple objectives for a given system is critical to its design [15, 16, 17].
The complete co-design problem with unidirectional coupling is formulated as [3]

min
x1,x2

w1f1 (x1) + w2f2 (x1,x2)

subject to: h1 (x1) = 0; h2 (x1,x2) = 0

g1 (x1) ≤ 0; g2 (x1,x2) ≤ 0 (3)

where f1 (x1) is the artifact objective function, f2 (x1,x2) is the controller objective function, x1 is the
vector of artifact design variables, x2 is the vector of controller design variables, h are the system equality
constraints, and g are the system inequality constraints, and w1 and w2 are the weights associated with
the objective functions f1 and f2, respectively.

4.1. Definitions
We adopt several terms to aid in explaining changes in the Pareto set. First, we define terms related to
the unidirectional coupled system problem. Next, we define terms related to the bi-objective problem.
Then, we define terms related to both problems.

Consider the nested system design problem Fn = w1f1(x1)+w2f
n
2 (x∗2(x1)), where the asterisk denotes

that the optimal values for x2 have been found with respect to x1. The coupling vector Γv [3] is derived
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from the Karush-Kuhn-Tucker (KKT) optimality conditions for the weighted-sum objective describing
the system design problem, where W = w2|w2 > 0, w1 = 1. The inner term is the gradient ∇fN

2 (x1). Γv

is assumed to be a row vector.

Γv = W

(
∂f2
∂x1

+
∂f2
∂x∗2

∂x∗2
∂x1

)
= W∇fn

2 (x1) (4)

Objective decoupling occurs when the inner term of Γv vanishes. In this case the solution to the single-
objective problem, min f1, will also be the solution to the weighted-sum system objective problem [3].

Constraint decoupling occurs when there is a range of values for W for which a given x∗ is the system
optimal solution. This behavior occurs when the gradients of the active constraints at the system optimal
solution can form convex combinations equal to the system objective gradient for a range of objective
gradient directions, controlled by W .

For a bi-objective problem, two objectives are said to be aligned at a particular design point x if the
angle between the objective gradients is 0, or equivalently if the angle described by the polar cone θ<

of the two negative objective gradients is π. The polar cone has an appealing geometric interpretation
in that the larger θ< the greater the region of simultaneously improving directions, or the greater the
objective alignment. From the definition of polar cone in Equation 2, the polar cone angle is

θ< = arccos
(

k1 · k2

|k1||k2|
)
, {k1| − k1∇f1(x) = 0; k2| − k2∇f2(x) = 0}. (5)

A convenient way to identify the appropriate k1 and k2 for a problem with two design variables is to
recognize that k1 should be orthogonal to −∇f1 and in the plane defined by f1 and f2. We preserve
the polar cone measure for the n-dimensional case but calculate it directly from the objective gradients:
θ< = π − α, where α = arccos((∇f1 · ∇f2)/(|∇f1||∇f2|)).

Two objective criteria are said to be coincident when the single-objective minimizers of the design vari-
ables shared between the objectives are equal. Namely, there exists some vector x∗| f1(x∗) = f◦1 , f2(x∗) =
f◦2 . A relative measure of coincidence to compare two Pareto sets is the L2 norm of the design variables
between objective ideal points ||(xf◦1 − xf◦2 )||2.

One Pareto set is said to dominate another Pareto set when each member of the dominated Pareto
set belongs to Q≥(x) for at least one member of the dominating Pareto set.

Two objectives are said to be independent at a particular design point x when Γv = 0 or when θ< is
undefined.

The coupling vector Γv is related to the slope of the Pareto frontier of the bi-objective problem [18],
where at a given Pareto-efficient point x∗

df∗2
df∗1

=
1
W

Γv
dx1

df∗1
= ∇fn

2
> · (1/∇f1). (6)

4.2. Quantification of Alignment and Objective Coupling
We begin with the necessary conditions for an efficient point to a bi-objective minimization problem [19]
as in Equation 1:

η1∇f1(x∗) + η2∇f2(x∗) + λ>∇h + µ>∇g(x∗) = 0;µ ≥ 0;λ 6= 0;µ>g(x∗) = 0; h = 0 (7)

Comparing Equation 7 to what would be the first-order optimality conditions for Equation 3 we see
that the co-design problem is a special case of the bi-objective problem where the weighting factors were
chosen a priori. In previous work on co-design coupling, emphasis has been placed on comparing f1 to the
weighted system objective w1f1 +w2f2 rather than comparing f1 and f2 directly. However, the coupling
vector Γv is difficult to interpret because it is directly proportional to the subjective weighting value W
and the units of measurement for the objective function. Comparing the two objectives directly frees the
designer from implying a scale W , or “exhange rate”, between objectives before studying the attainable
set. Objective alignment is a function of gradient direction only (not magnitude). It is still possible that
the gradient direction is affected by the scale of the controller variables x2 since they do not appear in
the artifact objective function.

Objective alignment can be calculated for a unidirectional coupled problem following the definition of
alignment above. This is a straightforward process if the whole gradients are available: ∇f1(x1),∇f2(x1,x2).
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However, it can be challenging to formulate or compute the whole gradients when the controller objective
is formulated as a nested problem with gradient ∇fn

2 = ∂f2
∂x1

+ ∂f2
∂x∗2

∂x∗2
∂x1

. For example, assume fn
2 (x1)

is a black-box simulation. We can then compute ∇fn
2 (x1) and observe ∂x∗2/∂x1. However, we require

∇f2(x1,x2). If we assume we can compute ∇f2(x2) analytically or by evaluating the conventional con-
trols problem f2(x2), then we can back out the missing component: ∂f2/∂x1 = ∇fn

2 − ∂f2
∂x2

∂x2
∂x1

.

4.3. Normalized Constraint Decoupling
Returning to the geometric interpretation of the weighted-sum objective in the design variable space, the
sum of any two vectors with positive weighting factors ((1 − w)f1 + wf2| w ≥ 0) will be a new vector
that lies between the two original vectors assuming the same origin. The necessary conditions for the
optimal system design problem imply that the weighted-sum-objective vector can be formed by a convex
combination of the gradients of the active constraints. Constraint decoupling requires that, at a given
Pareto point for a system design problem with weight w, the span of the convex combination of satisfied
constraints (including degenerate constraints) will similarly satisfy the necessary conditions for optimality
for a system design problem with some other weighting factor ω 6= w.

The constraint decoupling ratio φ can be calculated at an ideal point (f◦1 ) by first calculating the
angle between the two single-objective gradients ∇f1,∇f2. We can then find the limiting weighting value
w∗, and compute the angle between the weighted-sum system-objective gradient and ∇f1. Assuming the
system design objective is a convex combination of the single objectives, the limiting weighting value can
be found by solving the following problem where ∇f1,∇f2,∇g,∇h have been evaluated at (x1,x2)f◦1 .

min
w,β

−w

subject to: (1− w)∇f1 + w∇f2 + β>∇g + λ>∇h = 0

−β ≤ 0; λ 6= 0 (8)

The ratio φ evaluated at an ideal point is then the ratio of the angle between the maximum weighted-
sum objective gradient with the same optimal solution as the ideal point and the single-objective gradient,
and the angle between the two single-objective gradient vectors:

φ = arccos
( ∇f1 · ((1− w∗)∇f1 + w∗∇f2)
|∇f1|| ((1− w∗)∇f1 + w∗∇f2) |

)
/ arccos

( ∇f1 · ∇f2
|∇f1||∇f2|

)
(9)

The amount of constraint decoupling, or the range of weighting values for which the constraint decoupling
conditions hold, will change with the objective scaling. However, φ, based on the gradient directions will
take a value between 0 and 1 and will not change with objective scaling. Figure 2(c) illustrates this
case where the dashed line shows the limiting gradient direction for which the system design problem
will have the same solution as the single-objective problem f1. A normalized measure can be defined for
any Pareto point x∗ by replacing ∇f1 in Equation 8 with (1 − υ)∇f1 + υ∇f2, where υ is the minimum
weighting value for which x∗ is the system design problem solution.

Given a fixed set of constraints, increasing objective alignment will result in a higher φ. Given a fixed
set of objectives, decreasing satisfied-constraint alignment will result in higher φ.

Figure 1 summarizes the steps described above into an algorithm for systematically analyzing the
Pareto set for objective alignment and coupling. The “compare results” step of the algorithm is illus-
trated in the next sections.

5. Pareto Set Analysis
The design of the solution set (rather than a single-point design) is important in many design scenarios.
These scenarios share a characteristic that design decisions are not all made simultaneously, but some
may be made before others (configuration design), some decisions may be more flexible then others, or be
repeated at a higher frequency (dynamic controls, product platforming, design for adjustability), and some
decisions (or exogeneities) may be uncertain (robust design, product development investment planning,
regulatory policy). In the general case, systems characterized by multiple objectives will exhibit a tradeoff
relationship between improvements for both objectives. Considering how the Pareto set changes with
changes in the problem formulation can facilatate design of the attainable set in addition to illustrating
the tradeoffs between specific solutions.

Changes to the mathematical structure and input parameter values of a bi-objective programming
problem can lead to changes in the shape of the attainable set and its Pareto boundary. We illustrate the
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Figure 1: Algorithm for evaluating objective alignment and coupling measures for multiple problem
formulations

link between the terms described in Section 4 and outcomes of the Pareto set using a two-dimensional
nonlinear programming example, and a linear-positioning device design.

5.1. Problem specification and identification
The task of the designer abstracted to a mathematical decision-making problem is to specify the func-
tional forms of the objective and constraint functions (referred to as system specification in the dynamic
systems terminology), then partition model elements between parameters and variables, specify parame-
ter values, and find efficient values for design variables (referred to as system identification in the dynamic
systems terminology). We classify changes to a system design problem formulation (summarized in Ta-
ble 1) according to this definition of system specification and identification. Each of these decisions may
affect the Pareto set. For example, changing parameter values is equivalent to a traditional parametric
study and fits in system identification. The examples listed in Table 1 reflect changes to the example
problem specified in Equation 10.

Table 1: Classification of System Design Model Changes

System Modeling Stage Change Example

Specification

Objective functional form -
Constraint functional form -
Add constraint x2 − 5 + 2x1 ≤ 0
Remove constraint -

Identification Repartition parameters -
Parameter values p = 5

5.2. Example
We now demonstrate examples of problem formulation changes and observe the corresponding changes
to the Pareto set for a two-variable nonlinear programming problem modified from problem 10 in [20]:

min [f1 = 0.5x2
1 − 7x1, f2 = x2

2 − x1x2 − px2]>

subject to: x2
2 + 4x2

1 − 25 ≤ 0, p = 7 (10)

The problem is illustrated graphically in Figure 2. Case (a) shows the unmodified problem, case (b)
shows the case where p = 5, and case (c) includes the additional constraint x2− 5 + 2x1 ≤ 0. The dashed
line in case (c) indicates the degree of constraint decoupling for the problem.

We compute the measures defined in Section 4 and report the values in Table 2. The results have
been categorized by their reflection on the Pareto set. Performance refers to the placement of the Pareto
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Figure 2: Graphical representation of problem given in Equation 10 and modifications from Table 1.
Panel (a) shows the unmodified problem. Panel (b) shows the case where p = 5. Panel (c) shows the
case where the constraint x2 − 5 + 2x1 ≤ 0 has been added

set in the objective space. When one Pareto set dominates another Pareto set it is said to have improved
performance. Sensitivity refers to the the slope of the Pareto frontier. Evaluated locally, sensitivity is
defined as df∗2 /df

∗
1 . Evaluated over the entire Pareto frontier it represents the cost in one objective to

achieve the ideal value for the other objective. Parity refers to the similarity in the decision to be made
in order to minimize each objective f1 and f2 singly. One measure of parity is the measure of coincidence
between ideal values (||(xf◦1 − xf◦2 )||2). Complete parity requires that the decision maker chooses the
identical decision in order to minimize both objectives, in other words, the objectives are coincident. We
use the polar cone angle of the negative objective gradients θ< evaluated at an ideal point xf◦1 as an
alternative measure of parity given that objectives with a polar cone angle = π will be coincident. A
degenerate case of complete parity is when the objectives are independent.

Examining Table 2, case (a) dominates the other cases and so is superior in the performance criterion.
However, if parity is important, then case (b) would be superior. For reducing sensitivity of f2 with
respect to f1 case (c) would be superior.

Table 2: Pareto Set Analysis Results

Criterion Case a b c
Performance Dominance a > b, a > c - -
Sensitivity

Local
f◦1
f◦2

und. und. und.
0 0 0

Global (f2/f1) -5.26 -5.21 -1.80

Γv
f◦1
f◦2

und. und. und.
0 0 0

φ 0 0 0.29

Parity
Coincidence 3.59 3.00 3.54

Polar cone angle
f◦1
f◦2

π/2 π/2 π/2
2.68 2.79 2.68

6. System Design Example
We demonstrate our described Pareto analysis for a simplified design and controls problem involving
a positioning gantry. Changes in problem formulations could arise through changes in the mechanism
selected or the choice of design variables. We consider two system topologies. In the first topology, shown
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in Figure 3a, a mass M is connected to a fixed surface by a linear spring with constant ks. A flexible
belt connects the mass and a pulley with radius r, which is mounted on a DC motor with armature
resistance Ra and motor constant kt. The displacement of the mass from its original position is Z. In the
second topology, shown in Figure 3b, the belt and pulley are replaced by a power screw with diameter
dm, coefficient of friction µ, and pitch length p. A state-feedback controller with a precompensator is
applied to the system, as shown in Figure 4.

M
M

Ra, kt

Ra, kt

Z

Z

r

ksks

, p, dm

(a) Positioning Gantry with Drive Belt and Pulley (b) Positioning Gantry with Power Screw

Figure 3: Linear Positioning System

G (sI – A)-1B C

K

Zr Z

-

+

Figure 4: Control Architecture for Linear Positioning System

The optimization problem for both topologies is formulated as

min
M,ks,K1,K2

F = w1f1 + w2f2 (11)

fa = −Zf (M,ks) (12)
fc = ts (M,ks,K1,K2) (13)

subject to

g1 (M,ks) = M − c1k2/3
s ≤ 0 (14)

g2 (M,ks,K1,K2) = Mp −Mp,max ≤ 0 (15)
g3 (M,ks,K1,K2) = E − Emax ≤ 0 (16)

where c1 is a constant based on the material strength of the spring, Mp is the overshoot in the position
response, and E is the control effort over a set interval of time, calculated as E =

∫ tf

0
(V (t))2 dt.

Parameters used in the optimization are given in Table 3. The Pareto frontiers for the two topologies
are given in Figure 5, and a comparison is given in Table 4. For some measures, there is no difference
between the two topologies. For example, neither exhibits constraint decoupling, and in both cases the
polar cone angle θ< = π/2 at all points along the Pareto set. There are some differences, however,
which can be used to judge which topology might be desirable. It can be seen that the Pareto frontier
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Table 3: Parameters for Gantry Optimization

Parameter r kt Ra c1 Vf µ dm p
Value 2.5 cm 10.0 N-m/A 2.0 kΩ 1.0 10 V 0.06 50 mm 10 mm

corresponding to the first topology, with the belt drive, is dominant. Sensitivity analysis indicates that
the belt drive topology is less sensitive, both for the particular points chosen and for the global measure.
This might also indicate that the belt drive is a better choice, if low sensitivity is considered desirable in
the problem. The coupling vector Γv, however, has a smaller magnitude for the power screw topology
for a number of points on the curve, including the points labeled as ‘A’ on each Pareto frontier. This
might argue in favor of the power screw topology, if reducing the amount of coupling is of importance.
The power screw is also favored by an analysis of coincidence. The choice between these options will
therefore depend on a full understanding of the design problem and what is considered to be important
by the designer. Different circumstances will dictate the relevant Pareto set characteristics.
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 t s (s

)
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A

 wa = 0.55,  wc = 0.45

Belt Drive
 wa = 0.75,  wc = 0.25

Power Screw

Student Version of MATLAB

Figure 5: Comparison of Pareto Frontiers for Linear Positioning Device

7. Conclusions
We have shown how the particular case of combined optimal design and optimal control, or co-design, can
be represented as a system design problem or alternatively as a bi-objective programming problem with
an artifact objective and a controller objective. The coupling vector derived for a system problem with
unidirectional coupling was shown to be related to the alignment of competing objectives, as measured
by the polar cone of objective gradients, in the bi-objective programming formulation. We also showed
how the measure of constraint decoupling can be normalized when the system problem is considered as
a bi-objective one.

Systematically studying changes to coupling and alignment measures due to changes to the multi-
objective formulation can yield deeper insights into the system-level design problem. We illustrated this
approach with a simple nonlinear programming example and a positioning gantry co-design problem.
The approach involves selecting several Pareto efficient points for analysis. At a minimum, the two ideal
points should be selected. These points can be evaluated for each change in problem formulation such as
a change in the functional form of the objective function or a repartitioning of variables and parameters.
Numerical measures were then presented that describe each Pareto set in terms of its performance or
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Table 4: Pareto Set Analysis Results for Positioning Gantry

Criterion Belt Drive Power Screw
Performance Dominance a > b -

Sensitivity Local
f◦1
A
f◦2

und.
−1.2

0

und.
−3.1

0
Global (f2/f1) -1.64 -6.67

Γv
f◦1
A
f◦2

[
0 0

][ −6.95 −8.01
]

und.

[
0 0

][ −0.277 −0.234
]

und.
φ 0 0

Parity Coincidence 262 147
Polar Cone Angle π/2 (all points) π/2 (all points)

dominance over other problem formulations, sensitivity of one objective to changes in the other objective,
and the parity faced by the decision maker when considering the difference between the single-objective
solutions.

The desirability of a given Pareto set, or problem formulation, over another should be dictated by the
design context. There are numerous design contexts where the designer is concerned with the attainable
solution set and not only a point design solution. Such problems include the nested co-design problem
described here and a wide variety of problems where the “control,” or partitioned variable design decisions,
may be made asynchronously to the other design decisions. The performance, sensitivity, and parity
attributes of a particular design problem represent a multi-objective problem of their own.

It should be noted that objective alignment on the Pareto set as measured by the polar cone of
the objective gradients is different from the general notion of objective alignment that is perhaps best
characterized by the measure of coincidence. In fact high polar cone angles along the Pareto frontier
could be an indication of an undesirable problem formulation in some design scenarios. For example, in
an unconstrained bi-objective problem, by definition the polar cone angle will be 0 at all points along the
Pareto set. High polar cone angles along the Pareto set may imply that the feasible design space is far
away from both unconstrained objective optima.

Increased parity may similarly result from constraint tightening (either through parameter changes or
adding constraints). Both polar cone angle increases and lower coincidence distance may also be achieved
through reformulation of the objective functions.

The notion of sensitivity is particularly useful for problems characterized by a primary objective and
a secondary objective. For example in a product design problem with a market system objective such as
maximize profit, a producer will primarily be concerned with satisfying the profit objective although the
producer may also be concerned with other objectives such as environmental impact for strategic or other
reasons. In this case it would be valuable to assess the local sensitivity, or incremental cost to the profit
objective for decreases in environmental impact. Decreased sensitivity may result from a decrease in the
coupling term due to constraint reformulation, objective reformulation, parameter/variable repartitioning,
or modification to parameter values.

Plots of Pareto sets such as Figures 2 and 5 are typical and very useful analysis tools for bi-objective
problems. However, as computational expense increases, it is not always feasible to generate a suitable
graphical representation of the Pareto set. The methods presented in this paper provide a series of con-
crete steps to make the most out of a small number of analysis runs by connecting the local behavior
of a bi-objective problem to the characteristics of the Pareto set. Future work may seek to extend the
numerical measures described here to higher-dimension problems where graphical representation is simi-
larly problematic.
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